• Title/Summary/Keyword: Marine sediments

Search Result 813, Processing Time 0.034 seconds

Physics-based Salvage Simulation for Wrecked Ship Considering Environmental Loads (환경 하중을 고려한 침몰 선체의 물리 기반 인양 시뮬레이션)

  • Ham, Seung-Ho;Roh, Myung-Il;Kim, Ju-Sung;Lee, Hye-Won;Ha, Sol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.5
    • /
    • pp.387-394
    • /
    • 2015
  • Before salvaging a wrecked ship, the physics-based simulation is needed to predict lifting force before real operation by floating crane or barge. Procedures affecting lifting force for the salvage can be divided into three stages. At the first stage, the bottom breakout force for the wrecked ship to escape from seabed sediment should be calculated. At the second step, the current force acting on the wrecked ship while lifting from the seabed to near sea surface should be considered. Finally, buoyancy change near at the sea surface when the wrecked ship start to escape from the water should be considered. In the previous studies, only the breakout force at the first stage was calculated based on simple assumption of embedment depth and contact area of the wrecked ship. Therefore, we develop a program for salvage simulation including whole stages. It is composed of four modules such as the equations of motion, time integration, force calculation, and visualization. As a result, it is applied to simulate lifting the wrecked ship according to various environmental loads including seabed sediments.

Strategy for Solving Future Energy and Global Warming Using Icy materials (얼음 물질을 이용한 미래 에너지와 지구 온난화 처리 방안)

  • Shin, Kyu-Chul;Lee, Huen
    • Journal of Plant Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.81-93
    • /
    • 2007
  • Gas hydrates are known to form by physical interactions between host water and guest gas molecules and thus can be treated as a special type of icy materials. The gas hydrates are recently highlighted because of their use to future energy source even though they were discovered naturally in the deep-sea marine sediments a long time ago. However, the present and future urgent task is to develop the efficient and safe production technology for recovering methane from gas hydrates. Here, we propose one of potential recovery processes using swapping phenomenon occurring between gaseous carbon dioxide and methane hydrate deposits. Such a swapping process provide several technological and economical advantages over conventional processes. The carbon dioxide can be directly sequestered into methane hydrate layer and simultaneously methane can be produced with a high recovery rate more than 90%. In addition, the icy powders can be effectively used as a new medium for storing hydrogen. To increase hydrogen storage capacity the icy hydrate networks need to be redesigned to create the more empty cages in which hydrogen gas can be enclathrated. Functionalized icy materials might be used in a variety of energy and environmental fields.

Heavy Mineral Sands on the Southeastern Continental Shelf of Korea (한국 동남해역 대륙붕의 사립 중광물 분포)

  • CHOI, JIN YONG;PARK, YONG AHN;CHOI, KANG WON
    • 한국해양학회지
    • /
    • v.30 no.4
    • /
    • pp.271-278
    • /
    • 1995
  • A study of heavy mineral sands in terms of heavy mineral group and concentration has been carried out by analyzing 88 grab samples from the continental shelf off the southeast coast of Korea. Heavy mineral groups seem to be outlined and classified into four regions in the study area: 1) the western region; high concentrations of stable minerals, such as opaque mineral, magnetite, garnet and ZTR, 2) Korean Trough region; moderate concentrations of stable minerals, 3) the eastern region; abundant altered mineral and amphibole with minor of pyroxene concentration, and 4) the northeastern shelf-break region; low concentration of stable minerals with abundant altered minerals. The sedimentologic natures of four major heavy mineral regions (groupings) seem to be influenced by physical, dynamic and hydraulic milieu and also aerial and/or subaqueous weathering processes. It seems to be, further, plausible that shallow marine waves and currents associated with neritic dynamic condition of transgressive sea might be very effective on the concentration and groupings (sorting) of heavy min-erals in the surficial sediments of the continental shelf. The pyroxene-abundant heavy mineral suite (group), in fact, seems to suggest a sediment source from Japanese Islands.

  • PDF

Estimation of primary production of the waters around rack oyster farm at Wando, Korea

  • Jeong, Woo-Geon;Cho, Sang-Man
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.4
    • /
    • pp.9.1-9.7
    • /
    • 2018
  • To establish a comprehensive management strategy, as part of the optimization of cultural practice for an oyster rack culture system, we used a numerical model to estimate the primary production in the waters on the eastern coast of Wando island, South Korea. The estimated primary production ranged from 17.12 to $1052.55mgC\;m^{-2}day^{-1}$ ($204.22{\pm}224.75mgC\;m^{-2}day^{-1}$ in average). Except for the times of peak phytoplankton blooms, the estimated primary production (PP) was consistently under $200mgC\;m^{-2}day^{-1}$, which is more similar to the value of PP measured off the western coast of South Korea than the southern coast. No clear relationship was observed between nitrogen content and rainfall with the exception of heavy rainfall events, indicating that precipitation might not be the main source of nutrients in these waters. No clear influence was observed from Doam tidal discharge, located 24 km north from these waters due to main tide comes in this area from the channel between Gunwe-myeon in Wando island and Pukpyeong-myeon in Haenam-gun. Because of the shallow water depth and strong tidal current, resuspension of sediments, which causes an input of nitrogen into the system, could be easily caused by even mild wind and the infrequent passing of ships. Microscopic examination of the phytoplankton composition showed additional contribution of benthic species such as Paralia sulcata into the waters, which increase the productivity of oyster farms in the waters. The availability of nitrate and phosphate for primary production was temporarily limited throughout most of the spring and autumn blooming season.

Sediments Characteristics at the Bottom of Shallow Reservoir using Streamer Resistivity Survey (스트리머 전기비저항탐사를 이용한 담수호 바닥 퇴적물 특성 분석)

  • Song, Sung-Ho;Lee, Gyu-Sang;Kang, Mi-Kyung;Kim, Young-In;Kim, Yang-Bin;Cho, In-Ky
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.47-50
    • /
    • 2008
  • Streamer resistivity surveys in shallow marine environments were carried out to analyze sediment characteristics at the bottom of reservoir. Because the resistivity values of reservoir water are very low and those of sediment are relatively high, apparent resistivity values increase with depth. And it is necessary to eliminate the apparent resistivity data decreased highly when the number of separation increases. According to the repeated data processing, we proposed the resistivity ratio of upper-to-lower layer is $0.6{\sim}0.8$ because the RMS error of inversion leads to the minimum in these range. As a result of the inversion for two- and three-layer model, the inversion including water depth is proved to be more effective than conventional method.

  • PDF

Evaluation of the new coastal protection scheme at Mamaia Bay in the nearshore of the Black Sea

  • Niculescu, Dragos M.;Rusu, Eugen V.C.
    • Ocean Systems Engineering
    • /
    • v.8 no.1
    • /
    • pp.1-20
    • /
    • 2018
  • The target area of the proposed study, Mamaia beach, is a narrow stretch of sand barrier island that sits between the Siutghiol Lake and the Black Sea. In the northern part of the bay, is located the Midia Port, where between 1966 and 1971 a long extension of 5 km of the offshore was built. Because of this extension, the natural flow of sediments has been significantly changed. Thus, the southern part of the Mamaia Bay had less sand nourishment which meant that the coast was eroding and to prevent it a protection of six dikes was built. After approximately forty years of coastal erosion, the south of the Mamaia Bay had in 2016 a new protection scheme, which includes first of all the beach nourishment and a new dike structure (groins scheme for protection) to protect it. From this perspective, the objective of the proposed study is to evaluate the effectiveness of the old Master plan against the new one by modeling the outcome of the two scenarios and to perform a comparison with a third one, in which the protection dikes do not exist and only the artificial nourishment has been done. In order to assess the wave processes and the current patterns along the shoreline, a complex computational framework has been applied in the target area. This joins the SWAN spectral phase averaged model with the 1D surf model. Furthermore, new UAV technology was also used to map out, chart and validate the numerical model outputs within the target zone for a better evaluation of the trends expected in the shoreline dynamics.

Heavy metal assessment of marine sediment in selected coastal districts of the Western Region, Ghana

  • Kuranchie-Mensah, Harriet;Osei, Juliet;Atiemo, Sampson M.;Nyarko, Benjamin J.B.;Osae, Shiloh K.;Laar, Cynthia;Ackah, Michael;Buah-Kwofie, Archibold;Blankson-Arthur, Sara;Adeti, Prince J.
    • Advances in environmental research
    • /
    • v.2 no.2
    • /
    • pp.155-166
    • /
    • 2013
  • A preliminary investigation to establish the status of contamination of trace metals in the Western coast of Ghana was conducted prior to the commercial production of crude oil in the area. The study revealed the presence of heavy metals such as Pb (4.00-79.64 mg/kg), As (8.81-236 mg/kg), Cu (12.86-108.06 mg/kg), V (28.07-953.32 mg/kg), Zn (7.08-264.25 mg/kg), Cr (101.69-1366.62 mg/kg), Ni (42.41-451.43 mg/kg), Mn (16.77-1890.45mg/kg), Br (7.66-142.78 mg/kg), Ti (542.03-19960 mg/kg) and Fe (7472.88-97120 mg/kg) at six sites sampled along the coast. With the exception of Ti and Fe which showed no variation in metal concentration, the rest of the metals varied significantly among the sampled locations. Potential ecological risk of metals particularly of Co, As and Br which exhibited extreme enrichment of the sediments indicates considerable metal pollution in the studied areas. The degree of contamination is of particular concern especially to benthic biota that inhabit this environment for survival.

Reduction Effect for Deposition in Navigation Channel with Vegetation Model (식생모형에 의한 항로매몰 저감 특성)

  • Lee, Seong-Dae;Kim, Seong-Deuk;Kim, Ick-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.36 no.8
    • /
    • pp.659-664
    • /
    • 2012
  • Coastal vegetaion consists of rooted flowering marine plants that provide a variety of ecosystem services to the coastal areas they colonize. The attenuation of waves and sediments stabilization are often listed among these services. From this point of view, artificial vegetation model is an effective method of controlling sea bed and stabilization without damaging the landscape or the stability of the coastaline. In this study, numerical and hydraulic physical test for predicting deposition proces of a navigation channel caused by wave action is proposed. In the numerical model, we develop a numerical model for describing the wave attenuation and sediment transport in a navigation channel with a vegetation area. In addition, hydraulic model tests is performed in a navigation channel with irregular waves to examine the effect of vegetation in relation to deposition reduction in navigation channel. A comparison between the results of hydraulic and numerical tests shows resonable agreement.

Gas trasport and Gas hydrate distribution characteristics of Southern Hydrate Ridge: Results from ODP Leg 204

  • Lee, Young-Joo;Ryu, Byong-Jae;Kim, Ji-Hoon;Lee, Sang-Il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.407-409
    • /
    • 2006
  • Geochemical analyses carried out on samples collected from cores on and near the southern smit of Hydrate Ridge have advanced understanding by providing a clear contrast of the two major modes of marine gas hydrate occurrence. High concentrations (15%-40% of pore space) of gas hydrate occurring at shallow depths (0-40 mbsf) on and near the southern summit are fed by gas migrating from depths of as much as 2km within the accretionary prism. This gas carries a characteristic minor component of C2-C5 thermogenic hydrocarbons that enable tracing of migration pathways and may stabilize the occurrence of some structure II gas hydrate. A structure II wet gas hydrate that is stable to greater depths and temperatures than structure I methane hydrate may account for the deeper, faint second bottom simulating reflection (BSR2) that occurs on the seaward side of the ridge. The wet gas is migrating In an ash/turbidite layer that intersects the base of gas hydrate stability on the seaward side of and directly beneath the southern summit of Hydrate Ridge. The high gas saturation (>65%) of the pore space within this layer could create a two-phase (gas + solid) system that would enable free gas to move vertically upward through the gas hydrate stability zone. Away from the summit of the ridge there is no apparent influx of the gas seeping from depth and sediments are characterized by the normal sequence of early diagenetic processes involving anaerobic oxidation of sedimentary organic matter, initially linked to the reduction of sulfate and later continued by means of carbonate reduction leading to the formation of microbial methane.

  • PDF

Behavior of Suspended Solids for the Development of Coastal Industrial Complex (해안지역 산업단지조성 따른 해양 부유물질 거동에 관한 연구)

  • Kim, Ki-Dam;Lee, Joong-Woo;Lee, Hak-Seung;Kang, Seok-Jin;Jeon, Min-Su
    • Journal of Navigation and Port Research
    • /
    • v.32 no.6
    • /
    • pp.489-497
    • /
    • 2008
  • The government is now driving a policy that development of industrial complex site for the local manufacturing industry by reengineering and expanding the existing sites or reclamation of coastal zone. Therefore, it is necessary to analyze the impact of the coastal reclamation work in terms of physical and environmental characteristics. This study is also dealing with the impact of coastal reclamation for national industrial complex site to the ocean physical characteristics, variation of sedimentation and diffusion system and marine environment from the analysis of the field measurement and numerical simulation. The site for application is at the coastal boundary near Onsan national industrial complex, Ulsan metro city. In order to verify the numerical simulation result, it is compared to the collected data for tide, current, and sediments of the existing measurement and field observation at the selected stations for this study. The verified numerical models were applied to the actual field and the future change was analyzed.