• Title/Summary/Keyword: Marine invertebrate

Search Result 48, Processing Time 0.022 seconds

Chronic Effect Exposed to Carbon Dioxide in Benthic Environment with Marine Invertebrates Copepod(Tisbe sp.) and Amphipod(Monocorophium acherusicum) (저서환경에서 이산화탄소 노출에 따른 국내산 해산무척추동물 요각류(Tisbe sp.)와 단각류(Monocorophium acherusicum)의 만성영향)

  • Moon, Seong-Dae;Choi, Tae Seob;Sung, Chan-Gyoung;Lee, Jung-Suk;Park, Young-Gyu;Kang, Seong-Gil
    • Journal of Environmental Science International
    • /
    • v.22 no.3
    • /
    • pp.359-369
    • /
    • 2013
  • Chronic effects such as reproduction and population dynamics with elevated $CO_2$ concentration were evaluated using two representative marine benthic species, copepod (Tisbe sp.) and amphipod (Monocorophium acherusicum) adopting long-term exposure. Juvenile copepod and amphipod individuals were cultivated in the seawater equilibrated with control air (0.395 mmol $CO_2$/air mol) and high $CO_2$ air having 0.998, to 3.03, 10.3, and 30.1 mmol $CO_2$/air mol during 20 and 46 days, respectively. After the exposure period, the number of benthic invertebrate was counted with separate larval and juvenile stage such as naupliar, copepodid and adult for copepod, or neonate and adult for amphipod, respectively. The individual number of both test species at each life-stage was significantly decreased in seawater with 10.3 mmol $CO_2$/air mol or higher. Recently, the technology of marine $CO_2$ sequestration has been developed for the reduction of $CO_2$ emission, which may cause climate change. However, under various scenarios of $CO_2$ leaks during the injection process or sequestrated $CO_2$ in marine geological structure, the potential risk to organism including various invertebrates can be expected to exposure. So the results of this study suggested that the detailed consideration on the adverse effect with marine ecosystem can be prerequisite for the marine $CO_2$ sequestration projects.

Ecotoxicity Evaluation of PFCs using Marine Invertebrate, Sea Urchin (Mesocentrotus nudus) (둥근성게(Mesocentrotus nudus)를 이용한 과불화화합물의 생태독성평가)

  • Choi, Hoon;Lee, Ju-Wook;Lee, Seung-Min;Jeon, Hyung-Ju;Heo, Seung;Hwang, Un-Ki
    • Journal of Marine Life Science
    • /
    • v.6 no.2
    • /
    • pp.80-87
    • /
    • 2021
  • In this study, the toxic effects of PFOA and PFOS potassium salt on Mesocentrotus nudus using 10 min-fertilization rate and 48 h-normal embryogenesis were confirmed through the calculation of toxicity values such as Non-observed effective concentration, Low-observed effective concentration, and 50% of effective concentration. The case of 10 min-fertilization rate and 48 h-normal embryogenesis showed the concentration-dependent reduction pattern when exposed to PFOA and PFOS potassium salt, in tested concentration, respectively. The EC50 values of 10 min-fertilization rates for PFOA and PFOS potassium salt were 1346.43 mg/l and 536.18 mg/l, respectively, and the EC50 values of 48 h-normal embryogenesis were 42.67 mg/l and 17.81 mg/l, respectively. Both toxicity test methods showed high toxicity sensitivity to PFOS potassium salt. Recent studies have shown that the concentration of PFOA and PFOS in the marine environment has continuously decreased, and it is not enough to show acute toxicity to sea urchin. However, PFOA and PFOS have a very long half-life and can accumulate throughout the life of marine life, so it is still observed at a high concentration in shellfish. Therefore, a study on chronic toxicity through the whole-life cycle of marine organisms in coastal environments should be needed.

Biomedical Materials for Regenerating Bone Tissue Utilizing Marine Invertebrate (해양무척추동물을 활용한 골 조직 재생용 바이오 메디컬 소재)

  • Oh, Gun-Woo;Jung, Won-Kyo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • Tissue engineering is an emerging, innovative technology to improve or replace the biological functions of damaged tissues and organs. Scaffolds are important materials for tissue engineering as they support cell attachment, migration, and differentiation. Marine sponges naturally contain scaffolds formed by extracellular matrix proteins (collagen and sponging) and strengthened by a siliceous or calcium carbonate skeleton. Coral skeletons are also derived naturally formed by essential calcium carbonate in the form of aragonite, and are similar to human bone. In addition, collagen extracted from jellyfish is a biosafe alternative to bovine and porcine collagen and gained attention as a potential source for tissue engineering. Moreover, cuttlefish bone is an excellent calcium source and can be used to generate bio-synthetic calcium phosphate. It has become a natural candidate for biomimetic scaffolds. This review describes the use of natural products derived from marine invertebrates for applications in bone tissue engineering based on studies from 2008 to 2014.

Bioassay of Marine Animals to the Aquatic Toxicity of Composite Slag and Bituminous Coal (복합슬래그와 석탄에 대한 해산동물의 생물독성 검정)

  • KIM Jin Mee;KIM Kyoung Sun;LEE Jung Ah;SHIN Yun Kyung;PARK Chung Kil;CHIN Pyung
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.38 no.2
    • /
    • pp.100-105
    • /
    • 2005
  • Two species of fish and five species of marine invertebrate showed different tolerances to the toxicity of composite slag and bituminaus coal. Especially, Hemicentrotus pulcherrimus and young Haliotis discus hannai displayed marked differences in tolerance from. H. pulcherrimus and young H. discus hannai showed lethal effects at higher concentrations than those concentrations of the composite slag in the 1.0 and $0.4\%$ range, respectively. H. pulcherrimus showed no lethal effects at a lower concentration of $1.0\%$ composite slag and some differences in the rate of oxygen consumption with this concentration of composite slag. The lethal effects of bituminous coal on marine and fisheries organisms, even with higher concentrations, were not observed. At a higher concentration than that of 500 mg/L (ppm) of bituminous coal, decrease effects appeared in the rate of oxygen consumption of the experimental organisms. Taking into consideration that the experimental concentration of composite slag and bituminous coal were impracticable in the ocean, the results of this experiment suggest that composite slag and bituminous coal pose no real threat to marine or fisheries organisms.

Vertical Distribution of Mega-invertebrate and Calculation to the Stock Assessment of Commercial Species Inhibiting Shallow Hard-bottom in Dokdo, Korea (독도 연안 암반에 서식하는 초대형 저서동물의 수직분포와 산업종의 현존량 추정)

  • Park, Heung-Sik;Park, Rae-Sun;Myoung, Jung-Goo
    • Ocean and Polar Research
    • /
    • v.24 no.4
    • /
    • pp.457-464
    • /
    • 2002
  • Distribution and stock assessment of mega-benthos living in the shallow hard bottom around Dokdo were studied in July,2000. Depth and topographical conditions have affected to the densities and biomass of benthic animals. In shallow area, less than 10 m depth, turbo shell Batillus cornutus, mussel, Mytilus corusucs were dominated and showed distinct patterns in vertical distribution. On the other hand, the area over 10m depth, it showed diverse pattern depending on topography. Turbo shell, mussel and sea cucumber Stichopus japonicus were dominated in terms of fishery resources, but abalones were rarely sampled. Stock assessment were estimated to be 6.54 M/T, 3.89 M/T and 8.92 M/T, respectively. Some parts of coastal hard bottom around Dokdo, such as the area between Dongdo and Seodo, seemed to play an Important role as nursery ground. Therefore, it is necessary to the environmental monitoring for coastal fishery managements aspects.

Gonadal Changes during the Annual Reproductive Cycle of the Ascidian Halocynthia aurantium (Pallas)

  • Lee, Wang Jong;Kim, Gil Jung
    • Development and Reproduction
    • /
    • v.25 no.4
    • /
    • pp.299-303
    • /
    • 2021
  • The ascidian Halocynthia aurantium (sea peach), a marine invertebrate, belongs to the same genus of the phylum Chordata along with the ascidian Halocynthia roretzi (sea pineapple), which is one of the model animals in the field of developmental biology. The characteristics of development and reproduction of H. aurantium are not yet known in detail. In order to find out the spawning period of H. aurantium, we investigated development of the gonads during the annual reproductive cycle. Testis and ovary were both in the bisexual gonads (ovotestes) of H. aurantium, which is a hermaphrodite like H. roretzi. In H. aurantium, the right gonad was longer and slightly larger than the left gonad throughout the year. In each gonad, the number of the testis gonoducts was slightly higher than that of the ovary gonoducts. These features were similarly observed in H. roretzi. However, the number of the testis gonoducts and the ovary gonoducts in each gonad of H. aurantium was about half that of H. roretzi. The gonads of H. aurantium contracted during the winter and summer seasons. The gonads decreased to the smallest size around February, and then started to increase again in March. The gonads were most developed in September of the year. Therefore, it is estimated that the spawning of H. aurantium begins around this period.

Molecular detection of Kudoa septempunctata (Myxozoa: Multivalvulida) in sea water and marine invertebrates

  • Paari, Alagesan;Jeon, Chan-Hyeok;Choi, Hye-Sung;Jung, Sung-Hee;Kim, Jeong-Ho
    • Fisheries and Aquatic Sciences
    • /
    • v.20 no.8
    • /
    • pp.16.1-16.8
    • /
    • 2017
  • The exportation of cultured olive flounder (Paralichthys olivaceus) in Korea has been recently decreasing due to the infections with a myxozoan parasite Kudoa septempunctata, and there is a strong demand for strict food safety management because the food poisoning associated with consumption of raw olive flounder harbouring K. septempunctata has been frequently reported in Japan. The life cycle and infection dynamics of K. septempunctata in aquatic environment are currently unknown, which hamper establishment of effective control methods. We investigated sea water and marine invertebrates collected from olive flounder farms for detecting K. septempunctata by DNA-based analysis, to elucidate infection dynamics of K. septempunctata in aquaculture farms. In addition, live marine polychaetes were collected and maintained in well plates to find any possible actinosporean state of K. septempunctata. The level of K. septempunctata DNA in rearing water fluctuated during the sampling period but the DNA was not detected in summer (June-July in farm A and August in farm B). K. septempunctata DNA was also detected in the polychaetes Naineris laevigata intestinal samples, showing decreased pattern of 40 to 0%. No actinosporean stage of K. septempunctata was observed in the polychaetes by microscopy. The absence of K. septempunctata DNA in rearing water of fish farm and the polychaetes N. laevigata intestinal samples during late spring and early summer indicate that the infection may not occur during this period. N. laevigata was suspected as the possible alternate invertebrate host of K. septempunctata, but the actinosporean stage was not found by well plate method and further studies will be necessary. This research provides important baseline information for understanding the infection dynamics of K. septempunctata in olive flounder farms and further establishment of control strategies.

Complete genome sequence of Microbulbifer agarilyticus GP101 possessing genes coding for diverse polysaccharide-degrading enzymes (다양한 다당류를 분해하는 세균 Microbulbifer agarilyticus GP101의 완전한 유전체 서열)

  • Jung, Jaejoon;Bae, Seung Seob;Chung, Dawoon;Baek, Kyunghwa
    • Korean Journal of Microbiology
    • /
    • v.54 no.3
    • /
    • pp.299-301
    • /
    • 2018
  • Microbulbifer agarilyticus GP101 was isolated from the gut of a marine invertebrate Turbo cornutus and capable of degrading polysaccharide such as agar, alginate, and ${\kappa}$-carrageenan constituting algal cell wall. To obtain genomic basis of polysaccharide-degrading activity, we sequenced genome of strain GP101. The genome consists of 4,255,625 bp, 3,458 coding sequences with 55.4% G + C contents. BLASTP search revealed the presence of seven agarases, five alginate lyases, ten glucanases, four chitinases, two xylanases, one ${\kappa}$-carrageenase, and one laminarinase. The genomic data of strain GP101 will provide potential uses in the bioconversion process of diverse polysaccharide into bioenergy and biochemicals.

Effect of Microalgal Species on Nauplii Production in the Benthic Copepod Tigriopus japonicus (저서성 요각류 Tigriopus japonicus의 nauplii 생산에 미치는 미세조류의 영향)

  • Kim, Mi-Jeong;Kim, Jeong-Chang;Hur, Sung-Bum
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.3
    • /
    • pp.268-275
    • /
    • 2009
  • The survival and growth of marine benthic invertebrate larvae such as abalone depend on the nutritional value of micro algae. However, it is difficult to determine the dietary value of the many microalgal species used for food by benthic larvae. Therefore, we tested the benthic copepod, Tigriopus japonicus, which grazes microalgae on substrata in a manner similar to abalone larvae. It also has short generation time and is easy to rear which makes to be easier to examine the dietary value of each micro algal species. We measured the daily production of nauplii from gravid females of T. japonicus fed 26 microalgal species separately. Amino acid and fatty acid content of the micro algae and the copepod was also analyzed. The nauplii production of T. japonicus was the highest (10.7) when they were fed Navicula sp. (B-394) and the lowest (0.8) when they were fed Scrippsiella trochoidea. In Tetraselmis suecica the nauplii production was so high (8.2), which was not significantly different with the diatom group. We determined that Navicula sp. (B-394), Rhaphoneis sp. and T. suecica were good sources of food for T. japonicus. We suggest that a diet of with a mixture of these three micro algal species may be also good for invertebrate larvae such as abalone.

Copepods (Crustacea) Associated with Marine Invertebrates from the Moluccas

  • Kim, Il-Hoi
    • Animal Systematics, Evolution and Diversity
    • /
    • no.nspc6
    • /
    • pp.1-126
    • /
    • 2007
  • Thirty new species consisting of 24 poecilostomatoid and six siphonostomatoid copepods are described as associates of marine invertebrates from the Moluccas. New taxa in the order Poecilostomatoida are Amarda curvus n. sp., Anchimolgus gracilipes n. sp., A. partenuipes n. sp., A. parangensis n. sp., A. hastatus n. sp., Andrianellus papillipes n. sp., Exodontomolgus communis n. gen. n. sp., Jamescookina moluccensis n. sp., Odontomolgus flammeus n. sp., O. parvus n. sp., O. pavonus n. sp., Paranchimolgus parallelus n. gen. n. sp., and Scyphuliger karangmiensis n. sp. in the family Anchimolgidae; Enalcyonium circulatum n. sp. and E. ceramensis n. sp. in the family Lamippidae; Parastericola rimosus n. gen. n. sp. in the family Lichomolgidae; Pseudanthessius truncus n. sp. and P. planus n. sp. in the family Pseudanthessiidae; Acanthomolgus gomumuensis n. sp., A. dispadactylus n. sp., A. bandaensis n. sp., A. ambonensis n. sp., Kombia avitus n. sp. and Pionomolgus moluccensis n. sp. in the family Rhynchomolgiae. New taxa in the order Siphonostomatoida are Cryptopontius acutus n. sp. in the family Artotrogidae; Asteropontius fungicola n. sp., A. gonioporae n. sp., Collocheres humesi n. sp. and C. amicus n. sp. in the family Asterocheridae; and Molucomes ovatus n. gen. n. sp. in the family Stellicomitidae. Species new to the Moluccas and new host records are also included. Lists of 263 species of associated copepods known from the Moluccas and their 135 species of invertebrate hosts are provided.