• Title/Summary/Keyword: Marine fish farm effluent

Search Result 4, Processing Time 0.017 seconds

Recycling Marine Fish Farm Effluent by Microorganisms (유용미생물을 이용한 육상수조식 양식장 배출물의 재활용)

  • 문상욱;이준백;이영돈;김세재;강봉조;고유봉
    • Journal of Aquaculture
    • /
    • v.15 no.4
    • /
    • pp.261-266
    • /
    • 2002
  • The effluent sediment from the land-based seawater fish farms of Jeju consists of proteins, fats, ash and moisture. An evaluation of the effluent sediment as substrate for growth of phototrophic or lactic acid bacteria revealed that the sediment supported the growth of phototrophic bacteria but could support lactic acid bacteria only on supplementation with sugar. The possibility of using phototrophic bacteria for recycling the land-based seawater fish farm effluent is shown.

Application of Seaweed Cultivation to the Bioremediation of Nutrient-Rich Effluent

  • Chung, Ik-Kyo;Kang, Yun-Hee;Charles Yarish;George P. Kraemer;Lee, Jin-Ae
    • ALGAE
    • /
    • v.17 no.3
    • /
    • pp.187-194
    • /
    • 2002
  • A seaweed biofilter/production system of being developed to reduce the environmental impact of marine fish farm effluent in coastal ecosystems as a part of an integrated aquaculture system. Several known seaweed taxa and their cultivars have been considered as candidate biofilter organisms based on their species-specific physiological properties such as nutrient uptake kinetics and their economic value. Porphyra is an excellent cadidate and shows efficient nutrient extraction properties. Rates of ammonium uptake were maintained at around 3 ${\mu}moles{\cdot}g{\cdot}dw^{-1}{\cdot}min^{-1}$ at 150 ${\mu}M$ inorganic nitrogen at $10^{\circ}C$. Ulva is another possible biofilter candidate with an uptake rate of 1.9 ${\mu}moles{\cdot}g{\cdot}dw^{-1}{\cdot}min^{-1}$ under same conditions. A simple uptake/growth and harvest model was applied to estimate the efficiency of the biofilter/production system. The model was deterministic and used a compartment model structure based on difference equations. The efficiency of Porpyra filter was estimated over 17% of ${NH_4}^+$ removal from the contimuous supply of 100 ${\mu}mole{\cdot}l^{-1}\;{NH_4}^+\;at\;100l{\cdot}sec^{-1}$ flow rate.

Investigation of water qualities and microbials on the flow-through olive flounder, Paralichthys olivaceus farms using coastal seawater and underground seawater in Jeju (연안해수와 지하해수를 사용하는 제주 넙치 양식장의 수질과 미생물 변동)

  • KIM, Youhee
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.1
    • /
    • pp.59-67
    • /
    • 2022
  • This study assessed the levels of water qualities and microbials contamination of inland olive flounder farms in Jeju in the summers from 2015 to 2017. Three farms (A-C) located in a concentrated area using mixing coastal seawater and underground seawater and one farm (D) located in an independent area using only coastal seawater were selected. Total ammonia nitrogen (TAN) reached a maximum of 0.898 ± 1.024 mg/L as N in the coastal seawater of A-C, which was close to the limit of the water quality management goal of the fish farm. TAN in the influent from A-C was up to three times higher than that of D, so that the discharged water did not spread to a wide range area along the coast and continued to affect the influent. TAN of the effluent in A-C increased by 2.7-4.6 times compared to the influent, resulting in serious self-pollution in the flounder farm. Heterotrophic marine bacteria in the influent of A-C was about 600 times higher than D, and the discharge of A-C was increased by about 30 times compared to the influent.

Biochemical Responses in Olive Flounder, Paralichthys olivaceus Fed Diet Supplemented with Fermented Aquaculture Sewage (양식장 배출물 발효물의 사료첨가에 따른 넙치, Paralichthys olivaceus의 생화학적 반응)

  • Jee, Jung-Hoon;Moon, Sang-Wook;Kim, Se-Jae;Lee, Young-Don;Keum, Yoo-Hwa;Kang, Ju-Chan
    • Journal of fish pathology
    • /
    • v.18 no.2
    • /
    • pp.187-195
    • /
    • 2005
  • Effluent of aquaculture industry has caused a growing concern regarding its environmental impact. We assessed the use of flounder farming sewage as supplement of diet, to minimize the impact of aquaculture on the environment or also establish the technique for the recycling of effluent sediment derived from land-based seawater fish farm. In order to investigate the effects of a fermented aquaculture waste on biochemical responses of olive flounder (Paralichthys olivaceus), fermented products of aquaculture wastes were used as test compounds that cause hepatic and renal stress through the induction of oxidative stress in liver and kidney. Hepatosomatic index (HSI), glutathione content and glutathione dependent enzyme were not significantly different and no correlation was found within the different types of fermentation condition or supplement concentration, except for significant increases in 50% fermentation group and 50% concentration group in case of glutathione peroxidase activity and HSI value, respectively. These results showed addition of fermented aquaculture sewage may be an economic artificial sources of diet for fish aquaculture practices without affecting the function and safety in view of biochemical examination.