• Title/Summary/Keyword: Marine bio-energy

Search Result 63, Processing Time 0.028 seconds

Bio-Monitoring System Using Shell Valve Movements of Pacific Oyster (Crassostrea gigas) -I. Detecting Abnormal Shell Valve Movements Under Low Salinity Using a Hall Element Sensor (굴(Crassostrea gigas)의 패각운동을 이용한 생물모니터링시스템 연구 -I. 홀 소자를 이용한 저염분하에서 비정상적인 패각운동 측정)

  • Oh, Seok Jin;Lee, Jun-Ho;Kim, Seok-Yun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.2
    • /
    • pp.138-142
    • /
    • 2013
  • As an early warning system to reduce the damage of aquacultured mollusks due to low salinity water, we investigated the possibility of a biomonitoring system measuring the shell valve movement (SVM) of Pacific oyster (Crassostrea gigas) by using the Hall element sensor. In high salinity water of 27 psu, SVMs of Pacific oyster showed spikes which mean a relatively fast closing condition after opened condition of average 10-15 mm, and then the SVM showed back to opening condition slower than closing speed. In water salinity of 20-27 psu, the SVMs were similar to that of 27 psu. However, below 17 psu, it showed abnormal valve movements such as spending more time for shell closure. In 10 psu, we could not detected SVMs due to closed condition during experiment periods. Thus, if we quickly detect abnormal environmental variations like low salinity using bio-monitoring of SVM, it may be contribute to increased productivity by dramatically reducing damages in aquaculture.

A Study on the oxidation characteristics of micro-algal bio diesel derived from Dunaliella tertiolecta LB999 (Dunaliella tertiolecta LB999 유래 바이오디젤의 산화특성 연구)

  • Lee, Don-Min;Lee, Mi-Eun;Ha, Jong-Han;Ryu, Jin-Young;Choi, Chang-Yong;Shim, Sang-Hyuk;Lim, Sang-Min;Lee, Choul-Gyun;Lee, Bong-Hee
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • Bio diesel has advantages to reduce GHG(Greenhouse Gas) compare with the fossil fuel by using oil comes from plant/animal sources and even waste such as used cook oil. The diversity of energy feeds brings the positive effects to secure the national energy mix. In this circumstance, micro-algae is one of the prospective source, though some technical barriers. We analyzed the bio diesel which was derived from Dunaliella tertiolecta LB999 through the BD100 quality specifications designated by the law. From that result, it is revealed that the oxidation stability is one of the properties to be improved. In order to find the reason for low oxidation stability, we analyzed the oxidation tendency of each FAME components through some methods(EN 14111, EN14112, EN16091). In this study, we could find the higher double bond FAME portion, the more oxidative property(C18:1${\ll}C18:3$) in bio diesel and main unsaturated FAME group is acted as the key component deciding the bio diesel's oxidation stability. It is proved experimentally that C18:3 FAME are oxidized easily under the modified accelerated oxidation test. We also figure out low molecular weight hydrocarbon and FAME were founded as a result of thermal degradation. Some alcohol and aldehydes were also made by FAME oxidation. In conclusion, it is necessary to find the way to improve the micro-algal bio diesel's oxidation stability.

Characteristics and Biocompatibility of Electrospun Nanofibers with Poly(L-lactide-co-ε-caprolactone)/Marine Collagen (전기 방사법을 통해 제조된 Poly(L-lactide-co-ε-caprolactone)/Marine Collagen 나노파이버의 특성 및 세포친화력 평가)

  • Kim, Woo-Jin;Shin, Young-Min;Park, Jong-Seok;Gwon, Hui-Jeong;Kim, Yong-Soo;Shin, Heung-Soo;Nho, Young-Chang;Lim, Youn-Mook;Chong, Moo-Sang
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.124-130
    • /
    • 2012
  • The uniform nanofibers of poly(L-lactide-$co$-${\varepsilon}$-caprolactone) (PLCL) with different contents of marine collagen (MC) were successfully prepared by electrospinning method. The effects of the major parameters in electrospinning process such as tip to target distance (TTD), voltage, nozzle size and flow rate on the average diameter of the electrospun nanofiber were investigated in generating composite nanofiber. The diameter and morphology of the nanofibers were confirmed by a scanning electron microscopy (SEM). Also, we measured a water contact angle to determine the surface wettability of the nanofibers. The average diameter of the nanofibers decreased as the value of TTD, MC contents, and voltages increased in comparison with that of pristine PLCL nanofiber. In contrast, the diameter of the nanofibers increased as the flow rate and inner diameter of nozzle increased in comparison with that of pristine PLCL. In addition, the hydrophilicity of the nanofiber and attachment of MG-63 cells on the sheets increased as incorporated collagen contents increased. Therefore, the marine collagen would be a potential material to enhance cellular interactivity of synthetic materials by mimicking the natural tissue.

Economic Feasibility Study for Commercial Production of Bio-hydrogen (해양바이오수소개발 사업의 상업생산을 위한 예비경제성평가)

  • Park, Se-Hun;Yoo, Young-Don;Kang, Sung Gyun
    • Ocean and Polar Research
    • /
    • v.38 no.3
    • /
    • pp.225-234
    • /
    • 2016
  • This project sought to conduct an economic feasibility study regarding the commercial production of bio-hydrogen by the marine hyperthermophilic archaeon, Thermococcus onnurineus NA1 using carbon monoxide-containing industrial off-gas. We carried out the economic evaluation of the bio-hydrogen production process using the raw material of steel mill by-product gas. The process parameter was as follows: $H_2$ production rate was 5.6 L/L/h; the conversion of carbon monoxide was 60.7%. This project established an evaluation criterion for about 10,000 tonne/year. Inflation factors were considered as 3%. The operating costs were recalculated based on prices in 2014. The total investment required for development was covered 30% by capital and 70% by a loan. The operation cost for the 0.5-year test and integration, and the cost for the first three months in the 50% production period were considered as the working capital in the cost estimation. The costs required for the rental of office space, facilities, and other related costs from the construction through to full-scale production periods were considered as continuing expenses. Materials, energy, waste disposal and other charges were considered as the operating cost of the development system. Depreciation, tax, maintenance and repair, insurance, labor, interest rate charges, general and administrative costs, lubrication and miscellaneous expenses were also calculated. The hydrogen price was set at US$ 4.15/kg for the economic evaluation. As a result, the process was considered to be economical with the payback period of 6.3 years, NPV of 18 billion Won and IRR of 26.7%.

Long-term Outlook and Implications of the Marine Biotechnology Market in Korea and Abroad (국내외 해양생명공학 산업시장의 장기예측 및 함의)

  • Jang, Duckhee;Kang, Gilmo;Chae, Gi-Young;Kim, Soo-Ji;Jo, Min-Ju;Cha, Jeong-Mi;Ham, Hyun-Kyung
    • Ocean and Polar Research
    • /
    • v.35 no.2
    • /
    • pp.93-105
    • /
    • 2013
  • The marine biotechnology industry is very significant as compared to other industries as one of the driving forces for economic growth in the next generation in Korea. However, the marine biotechnology market has been considered as a component of the biotechnology industry market which made difficult for creating separate research areas in relation to the scope of the relevant industry market as well as making it difficult to establish its own R&D policy strategies. Accordingly, this study was executed to estimate the future long-term market value of the marine biotechnology within the limit of industrial field and to verify the importance of national R&D investment in marine biotechnology on the basis of estimations within the industrial perspective. To this end, we classified the marine biotechnology industry into the four sub-sectors and estimated the domestic and global industrial market in 2010 and 2024. According to the results, the domestic and global market of the marine biotechnology industry will see a remarkable growth by 2024. In particular, the bio-energy, pharmaceutical and functional foods industry markets will achieve astonishing advances. On the basis of the analysis results, Korea has to establish more progressive and aggressive R&D investment strategies to strengthen national competitiveness through the marine biotechnology industry.

Biofuel production from macroalgae toward bio-based economy (바이오 기반 경제를 위한 해조류 유래 바이오 연료 생산)

  • Lim, Hyun Gyu;Kwak, Donghun;Jung, Gyoo Yeol
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.8-16
    • /
    • 2014
  • Macroalgae has been strongly touted as an alternative biomass for biofuel production due to its higher photosynthetic efficiency, carbon fixation rate, and growth rate compared to conventional cellulosic plants. However, its unique carbohydrate composition and structure limits the utilization efficiency by conventional microorganisms, resulting in reduced growth rates and lower productivity. Nevertheless, recent studies have shown that it is possible to enable microorganisms to utilize various sugars from seaweeds and to produce some energy chemicals such as methane, ethanol, etc. This paper introduces the basic information on macroalgae and the overall conversion process from harvest to production of biofuels. Especially, we will review the successful efforts on microbial engineering through metabolic engineering and synthetic biology to utilize carbon sources from red and brown seaweed.

Clay-based Management for Removal of Harmful Red Tides in Korea: A Multi-perspective Approach

  • Choi, Moon-Hee;Lee, Soon Chang;Oh, You-Kwan;Lee, Hyun Uk;Lee, Young-Chul
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.6 no.1
    • /
    • pp.17-25
    • /
    • 2014
  • Periodically, harmful algal blooms (HABs) have occurred, with impacts on various areas including public health, tourism, and aquatic ecosystems, especially aquacultured and caged fisheries. To prevent or manage invasions of HABs into fish farms on an emergency basis, many methods have been proposed. Frequently over the past 30 years in coastal countries, treatments of clay and clay mixed with polyaluminum chloride (PAC) and chitosan have been tested for HAB-removal effectiveness in both the laboratory and the field. In Korea, yellow loess clay (hwangto) has been dispersed using electrolytic clay dispensers, both to decrease the amount of yellow loess clay's usage in containers and enhance HAB-removal efficiency. However, this emergency method has limitations, among which is the requirement for more effective controlling agents for field applications. Thus, in this paper, we review technologies for clay-based red tides prevention and control and their limitations, and, further, introduce next-generation algicidal technologies for the emergency protection of fish farms.

Simultaneous Effect of Salinity and Temperature on the Neutral Lipid and Starch Accumulation by Oceanic Microalgae Nannochloropsis granulata and Chlorella vulgaris (염분과 온도의 동시 영향에 따른 해양 미세조류 Nannochloropsis granulata와 Chlorella vulgaris의 중성지질 및 녹말 축적에 관한 연구)

  • Ko, Kyungjun;Lee, Chi-Heon;Moon, Hye-Na;Lee, Yeon-Ji;Yang, Jinju;Cho, Kichul;Kim, Daekyung;Yeo, In-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.3
    • /
    • pp.236-245
    • /
    • 2016
  • Because microalgae represent high growth rate than terrestrial plants, and it can accumulate significant lipid and carbohydrate content, and other bioactive compounds such as carotenoid and polyphenol in their body, it has been considered as one of the promising resources in bio-energy, and other industries. Although many studies has been performed about the microalgae-derived biochemical accumulation under various abiotic conditions such as different temperatures, salinities and light intensities, the studies about simultaneous effect of those parameters has rarely been performed. Therefore, this study focused on evaluation of simultaneous effect of different salinity (10, 30, 50 psu) and temperatures (20, 25, $30^{\circ}C$) on the changes of biomass, lipid, starch and photosynthetic pigment accumulation. As results, the highest growth rate was achieved at $30^{\circ}C$ and 30 psu in the both algal cultures, and the photosynthetic pigment, chlorophyll a and total carotenoid content, were increased in a temperature-dependent manner. The accumulation of lipid and starch contents exhibited different aspects under different combinations of temperature and salinity. From the results, it is suggested that the changes of microalgal lipid and starch accumulation under different salinities may be affected by the different temperatures.

Material Budgets in the Youngsan River Estuary with Simple Box Model (영산강 하구해역에서의 단순 박스모델에 의한 물질수지)

  • Lee, Kyeong-Sig;Jun, Sue-Kyung
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.4
    • /
    • pp.248-254
    • /
    • 2009
  • Budgets of fresh water, salt, DIP and DIN in the Youngsan river estuary were estimated seasonally in order to clarify the characteristics of material cycling and flux of nutrients with a simple box model. Inflow volumes of freshwater into system was approximately $36.481{\times}10^6{\sim}663.634{\times}10^6m^3/month$ and existing water mass of freshwater in system calculated by salt budget was approximately $2.515{\times}10^6{\sim}5.812{\times}10^6m^3$. Mean residence time of freshwater was calculated to be about 0.26~2.03 day. water exchange $1,248{\times}10^6{\sim}9,489{\times}10^6m^3/month$ assumed with salinity between estuary and adjacent ocean. Inflow mass of DIN and DIN were approximately 76.63~1,149.91 ton/month and 2.91~61.22 ton/month, respectively. Residence times of DIP and DIN were calculated to be 0.45~1.10 day and 0.28~1.92 day, respectively. The ratio of water residence time versus DIP, DIN residence time was calculated that freshwater residence time was longer than DIP, DIN residence time except for summer season. Thus, We assume that circulation of Nutrients in the system will happen rapidly except for summer season. Specially DIP in Winter could assume to outer input source existence because of seawater inflow in system and high DIP concentration in open sea.

  • PDF

Effect of Ammonia Concentration in Rearing Water on Growth and Blood Components of the Parrotfish Oplegnathus fasciatus (사육수의 암모니아 농도가 돌돔(Oplegnathus fasciatus)의 성장과 혈액성분에 미치는 영향)

  • Park, Seongdeok;Kim, Pyong Kih;Jeon, Joong-Kyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.6
    • /
    • pp.840-846
    • /
    • 2014
  • This study investigated growth and hematological changes in parrotfish Oplegnathus fasciatus (~200 g/fish) reared under different total ammonia nitrogen (TAN) concentrations (0, 4, or 8 mg/L) for 6 weeks. Survival rates of parrotfish in all experimental groups did not significantly differ, as they were all ~100%. Although specific growth rate (SGR), weight gain, and daily feed intake in the high TAN concentration group (TAN8) were significantly lower than in the other two groups, there was no significant difference between the TAN4 group and the control group, (TAN0), indicating that parrotfish have a strong resistance to ammonia toxicity. As for temporal changes of the major blood components, cortisol increased as a result of stress caused by the high ammonia concentration in the TAN8 group. For this reason, the concentrations of energy sources such as glucose and total cholesterol were reduced. However, there was little difference among all experimental groups in concentrations of liver function glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT), and nutrient factors, such as total protein and albumin.