DOI QR코드

DOI QR Code

Clay-based Management for Removal of Harmful Red Tides in Korea: A Multi-perspective Approach

  • Choi, Moon-Hee (Department of Beauty and Cosmetology, Graduate School of Industry, Chosun University) ;
  • Lee, Soon Chang (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Oh, You-Kwan (Biomass and Waste Energy Laboratory, Korea Institute of Energy Research (KIER)) ;
  • Lee, Hyun Uk (Division of Materials Science, Korea Basic Science Institute (KBSI)) ;
  • Lee, Young-Chul (Department of BioNano Technology, Gachon University)
  • Received : 2014.07.07
  • Accepted : 2014.07.22
  • Published : 2014.06.30

Abstract

Periodically, harmful algal blooms (HABs) have occurred, with impacts on various areas including public health, tourism, and aquatic ecosystems, especially aquacultured and caged fisheries. To prevent or manage invasions of HABs into fish farms on an emergency basis, many methods have been proposed. Frequently over the past 30 years in coastal countries, treatments of clay and clay mixed with polyaluminum chloride (PAC) and chitosan have been tested for HAB-removal effectiveness in both the laboratory and the field. In Korea, yellow loess clay (hwangto) has been dispersed using electrolytic clay dispensers, both to decrease the amount of yellow loess clay's usage in containers and enhance HAB-removal efficiency. However, this emergency method has limitations, among which is the requirement for more effective controlling agents for field applications. Thus, in this paper, we review technologies for clay-based red tides prevention and control and their limitations, and, further, introduce next-generation algicidal technologies for the emergency protection of fish farms.

Keywords

References

  1. Anderson, D.M. 2009. Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coast. Manage. 52, 342-347. https://doi.org/10.1016/j.ocecoaman.2009.04.006
  2. Lee, Y.-C., E.S. Jin, et al. 2013. Utilizing the algicidal activity of aminoclay as a practical treatment for toxic red tides. Sci. Rep. 3, 1292 (1-8). https://doi.org/10.1038/srep01292
  3. Park, T.G., W.A. Lim, Y.T. Park, C.K. Lee and H.J. Jeong. 2013. Economic impact, management and mitigation of red tides in Korea.Harmful Algae 30S, S131-S143.
  4. Kim, C.S., S.G. Lee and H.G. Kim. 2000. Biochemical responses of fish exposed to a harmful dinoflagellate Cochlodinium polykrikoides. J. Exp. Mar. Biol. Ecol. 254, 131-141. https://doi.org/10.1016/S0022-0981(00)00263-X
  5. Kwok, C.-T., J.P. van de Merwe, J.M.Y. Chiu and R.S.S. Wu. 2012. Antioxidant responses and lipid peroxidation in gills and hepatopancreas of the mussel Perna viridis upon exposure to the red-tide organism Chattonella marina and hydrogen peroxide. Harmful Algae 13, 40-46. https://doi.org/10.1016/j.hal.2011.10.001
  6. Sengco, M.R. and D.M. Anderson. 2004. Controlling harmful algal blooms through clay flocculation. J. Eukaryot. Microbiol. 51, 169-172. https://doi.org/10.1111/j.1550-7408.2004.tb00541.x
  7. Atkins, R., T. Rose, R.S. Brown and M. Robb. 2001. The microcystis cyanobacteria bloom in the Swan River-February 2000. Water Sci. Technol. 43, 107-114.
  8. Shirota, A. 1989. Red tide problem and countermeasures. Int. J. Aq. Fish. Technol. 1, 25-38, 195-293.
  9. Anderson, D.M. 1997. Turning back the harmful red tide. Nature 388, 513-514. https://doi.org/10.1038/41415
  10. Lee, Y.-J., J.-K. Choi, E.-K. Kim, S.-H. Youn and E.-J. Yang. 2008. Field experiments on mitigation of harmful algal blooms using a Sophorolipid-yellow clay mixture and effects on marine plankton. Harmful Algae 7, 154-162. https://doi.org/10.1016/j.hal.2007.06.004
  11. Gustafsson, S., M. Hultberg, R.I. Figueroa and K. Rengefors. 2009. On the control of HAB species using low biosurfactant concentrations. Harmful Algae 8, 857-863. https://doi.org/10.1016/j.hal.2009.04.002
  12. Seo, J.-K., C.-H. Kim, et al. 2003. The algicidal effect of antimicrobial peptide, Mastoparan B. J. Fish Pathol. 16, 193-201.
  13. Kohno, D., Y. Sakiyama, et al. 2007. Cloning and characterization of a gene encoding algicidal serine protease from Pseudoalteromonas sp. strain A28. J. Environ. Biotechnol. 7, 99-102.
  14. Park, S.-C., J.-K. Lee, S.W. Kim and Y. Park. 2011. Selective algicidal action of peptides against harmful algal bloom species. PLoS One 6, e26733. https://doi.org/10.1371/journal.pone.0026733
  15. Li, D., H. Zhang, et al. 2014. A novel algicide: evidence of the effect of a fatty acid compound from the marine bacterium, Vibrio sp. BS02 on the harmful dinoflagellate, Alexandrium tamarense. PLoS One 9, e91201. https://doi.org/10.1371/journal.pone.0091201
  16. Kim, Y.-M., Y. Wu, et al. 2012. Algicidal activity of thiazolidinedione derivatives against harmful algal blooming species. Mar. Biotechnol. 14, 312-322. https://doi.org/10.1007/s10126-011-9412-5
  17. Wu, Y., Y. Lee, et al. 2014. A novel thiazolidinedione derivative TD118 showing selective algicidal effects for red tide control. World J. Microbiol. Biotechnol. 30, 1603-1614. https://doi.org/10.1007/s11274-013-1584-x
  18. Jeong, S.-W., S.M. Yun, et al. 2014. Can the algicidal material Ca-aminoclay be harmful when applied directly to a natural ecosystem? an assessment using microcosm experiments. J. Hazard. Mater. in preparation.
  19. Sengco, M.R., A. Li, K. Tugend, D. Kulis and D.M. Anderson. 2001. Removal of red- and brown-tide cells using clay flocculation laboratory culture experiments with Gymnodinium breve and Aureococcus anophagefferens. Marine Ecol. Prog. Ser. 210, 41-53. https://doi.org/10.3354/meps210041
  20. Sengco, M.R., J.A. Hagstrom, E. Graneli and D.M. Anderson. 2005. Removal of Prymnesium parvum (Haptophyceae) and its toxins using clay minerals. Harmful Algae 4, 261-274. https://doi.org/10.1016/j.hal.2004.05.001
  21. Song, Y.C., S.Sivakumar,et al. 2010. Removal of Cochlodinium polykrikoides by dredged sediment: a field study. Harmful Algae 9, 227-232. https://doi.org/10.1016/j.hal.2009.10.005
  22. Pan, G., J. Chen. and D.M. Anderson. 2011. Modified local sands for the mitigation of harmful algal blooms. Harmful Algae 10, 381-387. https://doi.org/10.1016/j.hal.2011.01.003
  23. Avinimelech, Y., B.W. Troeger and L.W. Reed. 1982. Mutual flocculation of algae and clay: evidence and implications. Science 216, 63-65. https://doi.org/10.1126/science.216.4541.63
  24. Cerff, M., M. Morweiser, et al. 2012. Harvesting fresh water and marine algae by magnetic separation: screening of separation parameters and high gradient magnetic filtration. Bioresour. Technol. 118, 289-295. https://doi.org/10.1016/j.biortech.2012.05.020
  25. Shumway, S.E., D.M. Frank, L.M. Ewart and J.E. Ward. 2003. Effect of yellow loess on clearance rate in seven species of benthic, filter-feeding invertebrates. Aquacult. Res. 34, 1391-1402. https://doi.org/10.1111/j.1365-2109.2003.00958.x
  26. Jeong, H., J.H. Yim, et al. 2005. Genomic blueprint of Hahella chejuensis, a marine microbe producing an algicidal agent. Nucleic Acids Res. 33, 7066-7073. https://doi.org/10.1093/nar/gki1016
  27. http://en.wikipedia.org/wiki/Thiazolidinedione
  28. Lee, Y.-C., W.-K. Park and J.-W. Yang. 2011. Removal of anionic metals by amino-organoclay for water treatment. J. Hazard. Mater. 190, 652-658. https://doi.org/10.1016/j.jhazmat.2011.03.093
  29. Lee, Y.-C., E.J. Kim, D.A. Ko, and J.-W. Yang. 2011. Water-soluble organo-building blocks of aminoclay as a soil-flushing agent for heavy metal contaminated soil. J. Hazard. Mater. 196, 101-108. https://doi.org/10.1016/j.jhazmat.2011.08.077
  30. Farooq, W., Y.-C. Lee, et al. 2013. Efficient microalgae harvesting by organo-building blocks of nanoclays. Green Chem. 15, 749-755. https://doi.org/10.1039/c3gc36767c
  31. Lee, Y.-C., M.I. Kim, M.-A. Woo, H.G. Park and J.-I. Han. 2013. Effective peroxidase-like activity of a water-solubilized Fe-aminoclay for use in immunoassay. Biosens. Bioelectron. 42, 373-378. https://doi.org/10.1016/j.bios.2012.10.092
  32. Huang, W.-C. and J.-D. Kim. 2013. Cationic surfactant-based method of simultaneous harvesting and cell disruption of a microalgal biomass. Bioresour. Technol. 149, 579-581. https://doi.org/10.1016/j.biortech.2013.09.095
  33. Lee, Y.-C., B. Kim, et al. 2013. Harvesting of oleaginous Chlorella sp. by organoclays. Bioresour. Technol. 132, 440-445. https://doi.org/10.1016/j.biortech.2013.01.102
  34. Lee, Y.-C., Y.S. Huh, et al. 2013. Lipid extractions from docosahexaenoic acid (DHA)-rich and oleaginous Chlorella sp. biomasses by organic-nanoclays. Bioresour. Technol. 137, 74-81. https://doi.org/10.1016/j.biortech.2013.03.090
  35. Choi, M.-H., Y. Hwang, et al. 2014. Aquatic ecotoxicity effect of engineered aminoclay nanoparticles. Ecotox. Environ. Safe. 102, 34-41. https://doi.org/10.1016/j.ecoenv.2014.01.005
  36. Han, H.-K., Y.-C. Lee, M.-Y. Lee, A.J. Patil and H.-J. Shin. 2011. Magnesium and calcium organophyllosilicates: synthesis and in vitro cytotoxicity study. ACS Appl. Mater. Interfaces 3, 2564-2572. https://doi.org/10.1021/am200406k
  37. Shin, Y.C. and Y.S. Kim. 2001. Method for controlling the harmful algal bloom with ammonium compound. Korean patent no. 10-0295553.
  38. Park, S.Y, H.U. Lee, et al. 2014. Photoluminescent green carbon nanodots from food-waste-derived sources: large-scale synthesis, properties, and biomedical applications. ACS Appl. Mater. Interfaces 6, 3365-3370. https://doi.org/10.1021/am500159p
  39. Lee, H.U., S.Y.Park,et al.2014. Photoluminescent carbon nanotags from harmful cyanobacteria for drug delivery and imaging in cancer cells. Sci. Rep. 4, 4665 (1-7).
  40. Baek, S.H., M.-C. Jang, et al., 2013. Algicidal effects on Heterosigma akashiwo and Chattonella marina (Raphidophyceae), and toxic effects on natural plankton assemblages by a thiazolidinedione derivative TD49 in a microcosm. J. Appl. Phycol. 25, 1055-1064. https://doi.org/10.1007/s10811-012-9905-2
  41. Baek, S.H., M. Son, et al., 2013. Algicidal activity of the thiazolidinedione derivative TD49 against the harmful dinoflagellate Heterocapsa circularisquama in a mesocosm enclosure. J. Appl. Phycol. 25, 1555-1565. https://doi.org/10.1007/s10811-012-9953-7

Cited by

  1. Loading Effects of Aminoclays in Co-Culture of Two Cyanobacterial Microcystis and Anabaena Species as an Algicidal Role vol.11, pp.12, 2014, https://doi.org/10.3390/app11125607