• Title/Summary/Keyword: Marine Generator

Search Result 246, Processing Time 0.024 seconds

A theoretical investigation of misfiring effects on the crankshaft torsional vibration of diesel engine (디젤기관 착화실패가 크랭크축계 비틀림 진동에 미치는 환경의 이론적 고찰)

  • 전효중;임영복
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.94-106
    • /
    • 1986
  • Since the oil shock of '70s the engine makers have developed new types of diesel engine with low fuel consumption. There is an obvious tendency towards the use of poorer quality fuels, such as the residual oil from chemical processes of refinery. The shaft driving generators is also widely adopted on behalf of the auxiliary diesel engines, which are driving on the expensive diesel oil and have high fuel oil consumption rates, and some mania propulsion diesel engines are equipped with reduction gear systems to get better propulsive efficiency by slower propeller revolutions. The propulsion shafting system equipped with the shaft driving generator or the geared diesel engine shafting system has flexible couplings, and it requires extensive investigations of the torsional vibration and torque fluctuation in order to ensure the acceptable operation range in service. The characteristics of misfiring must be especially examined for the high viscosity fuels to be used. Both torsional vibration and fluctuating torque resulted from misfiring, should be examined for thier effects on the flexible coupling and propulsion shafting system. This paper is to investigate and solve the above mentioned problems which must be predicted on the design-stage of marine propulsion shafting system. A computer program is developed to calculate the indicated diagram, fluctating torque and torsional vibration for both normal and misfiring conditions.

  • PDF

A Study on Spatial Scheduling in the P.E. Stage (선행 탑재장에서의 공간일정계획에 관안 연구)

  • Koo Chung-kon;Yoon Duck-Young;Bae Tae-Kyu;Cho Min-Ch
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.61-66
    • /
    • 2004
  • In this paper an effort is made to develop an innovative spatial arrangement concept pertaining to ship building industry. The spatial scheduling is the problem that concentrates on effective planning of available space and arrangements of blocks and in a priority manner. In order to create an effective spatial scheduling. a database providing the priority has to be available to make the erection sequence. Such a system works hand in hand with erection sequence generator program The erection sequence program works on the conventional network analysis method which uses a typical parent-children idea for the calculation of the ENT(possible earliest network start time) and LNT(possible latest network start time). This program works in a cyclic manner taking turns by calculating the ENT in upward trace and LNT on the return trace thereby generating the entire erection sequence diagram for the requisite problem The generated database serves as an input data for spatial scheduling problem. When the system works it takes into consideration the entire system based on heuristic concepts as mentioned. There system uses the spatial aspects such as the available area of the P. E area and plan area of the corresponding blocks and its priority of erection from the erection sequence generator program develops the spatial scheduling arrangement. In this paper using all these concepts an innovative spatial schedule development system developed.

  • PDF

Experimental and numerical investigations on effect of reverse flow on transient from forced circulation to natural circulation

  • Li, Mingrui;Chen, Wenzhen;Hao, Jianli;Li, Weitong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1955-1962
    • /
    • 2020
  • In a sudden shutdown of primary pump or coolant loss accident in a marine nuclear power plant, the primary flow decreases rapidly in a transition process from forced circulation (FC) to natural circulation (NC), and the lower flow enters the steam generator (SG) causing reverse flow in the U-tube. This can significantly compromise the safety of nuclear power plants. Based on the marine natural circulation steam generator (NCSG), an experimental loop is constructed to study the characteristics of reverse flow under middle-temperature and middle-pressure conditions. The transition from FC to NC is simulated experimentally, and the characteristics of SG reverse flow are studied. On this basis, the experimental loop is numerically modeled using RELAP5/MOD3.3 code for system analysis, and the accuracy of the model is verified according to the experimental data. The influence of the flow variation rate on the reverse flow phenomenon and flow distribution is investigated. The experimental and numerical results show that in comparison with the case of adjusting the mass flow discontinuously, the number of reverse flow tubes increases significantly during the transition from FC to NC, and the reverse flow has a more severe impact on the operating characteristics of the SG. With the increase of flow variation rate, the reverse flow is less likely to occur. The mass flow in the reverse flow U-tubes increases at first and then decreases. When the system is approximately stable, the reverse flow is slightly lower than obverse flow in the same U-tube, while the flow in the obverse flow U-tube increases.

Detection Technique and Device of Series Arcing Phenomena (직렬아크현상의 검출기술 및 장치)

  • Ji, Hong-Keun;Jung, Kwang-Suk;Park, Dae-Won;Kil, Gyung-Suk;Seo, Dong-Hoan;Rhyu, Keel-Soo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.332-338
    • /
    • 2010
  • Annually, electrical fires caused by arcing phenomena in power system rapidly increase as the use of more electric appliances, but there is no established method for the prevention of the accidents. With this background, this paper dealt with the experimental results on a series arc detection technique and a device for air conditioners. Series arcing phenomena that is generated in incomplete connection of air conditioners was simulated, and the frequency spectrum was analyzed. The Fast Fourier Transform (FFT) of the arc pulse showed that the dominant frequency components exist in ranges of 190 kHz~250 kHz and 900 kHz~1.6 MHz. An arc detection circuit with low cut off frequency of 170 kHz to attenuate 60 Hz by 170 dB and a signal discriminator were designed. Also, an algorithm which separate series arc signal from unwanted noises produced by switching operation, inverter, and surge was proposed. Application experiment was carried out on several types of air-conditioners by using the arc generator specified in UL1699, and the results showed the over 99 % accuracy.

Study on Characteristics of Heat Transfer and Flow in Plate Heat Exchanger (판형 열교환기의 열전달과 유동특성에 대한 연구)

  • Jin, Zhen-Hua;Lee, Kwang-Sung;Ji, Myoung-Kuk;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1476-1483
    • /
    • 2009
  • In present work, experiments conducted to investigate the heat transfer characteristics and relationship between operating parameters and production of fresh water as output of the system. Plate Heat Exchanger (PHE) applied in vacuum evaporator for product fresh water that system intended to efficiently use low grade heat. PHE have become popular in chemical, power, food and refrigeration industries due to the efficient heat transfer performance, extremely compact design and flexibility of extend or modify to suit changed duty. The heat transfer part contains corrugated plates with 60 degree of chevron angle which verified by many researchers and commonly apply. Fresh water can be produced from saline water under near vacuum pressure by operating ejector. Consequently, evaporating temperature stay around $51-57^{\circ}C$ so it is possible to use any low grade heat source or renewable source. The maximum fresh water produced by freshwater generator with plat heat exchanger applied in the study was designed as 1.0 Ton/day.

  • PDF

A feasibility study on the hybrid power generation system considering of electricity needs' fluctuation of coastal area's houses (해안지역 주거시설을 위한 전력수요 변동 대응형 하이브리드 발전시스템 도입 효과 예측에 관한 사례연구)

  • Hwang, Kwang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.977-983
    • /
    • 2013
  • Based on the consideration of the hourly patterns of the electricity power consumption, this study predicted the effectiveness of hybrid power generation system, which is composed with wind power generator and photovoltaic generator. And this case study is performed at Konrido, which is a affiliated island of Kyeongsangnam-do. As the results, it is obvious that it is not efficient to cover the whole electricity power consumption only with any single power generating system, because the hourly patterns of electricity power consumption, wind power generation and photovoltaic generation are quite different. And because the wind is being through almost 24 hours, it is also found out that wind power generating system with storage battery is the most efficient combination for this case study.

A Study on the Design of Single Phase Cycloconverter by Cosine Wave Crossing Control Method (코사인 점호방식에 의한 단상 싸이클로콘버터의 설계에 관한 연구)

  • 김시헌;안병원;노창주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.5
    • /
    • pp.71-85
    • /
    • 1993
  • The Cycloconverter that the author is going to treat in this paper, has strong advantages over the D.C. Link Inverter in points of chattering torque problem and natural commutation. Thus, the Cycloconverter is expected to be well applied to large and low-speed machines which require better speed control at low frequency. But the control circuit of Cycloconverter has two weak points described as follows. 1) Because of its rather complicated control circuit, it is likely to be illoperating due to unexpected noise signals, thus the higher the accuracy and reliability of the circuit is required to be, the more the circuit may cost. 2) Because the load current is not purely sinusoidal, the Cycloconverter may possibly be destroyed in case of inaccurate convert switching resulted from the difficulties in detecting the load current-zero and the current direction at the moment. In this paper, the author first of all intends to design and build a modified VVVF-type Noncirculating Current Cycloconverter to which recently proposed control methods are applied for improving the circuit simplicity, the control performance, and the system reliability. And then, experiments for observing the output waveforms of the Cycloconverter which is controlled by Singled-Board Computer using 8086 16-bit microprocesser are carried out. Finally the author concludes the result of this study as follows. 1) By replacing the conventional analog control circuits such as Reference Wave Generator, Cosine Timing Wave Generator, and Comparator with softwares, a great circuit simplicity is achieved. 2) The output of the designed Cycloconverter changes its frequency very fast without showing discontinuity of its waveform, and this waveform characteristics enables the smooth speed control of Induction Motor. 3) The design control circuit of Cycloconverter can be applied to the systems of 12 or 24 pulses because of its short processing period.

  • PDF

Moored measurement of the ambient noise and analysis with environmental factors in the coastal sea of Jeju Island (제주 연해 수중 주변소음 계류 측정과 환경 변화에 따른 분석)

  • Jeong, Inyong;Min, Soohong;Paeng, Dong-Guk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.5
    • /
    • pp.390-399
    • /
    • 2020
  • Underwater ambient noise was measured at the eastern and western costal sites of Jeju Island where the water depth was 20 m by a hydrophone moored at mid-depth (10 m) for 4 months. These eastern and western sites were selected as potential sites for offshore wind power generator and the current wave energy generator, respectively. Ambient noise was affected by environmental data such as wind and wave, which were collected from nearby weather stations and an observation station. Below 100 Hz, ambient noise was changed about 5 dB ~ 20 dB due to low and high tide. Below 1 kHz, wave and wind effects were the main source for ambient noise, varying up to 25 dB. Ambient noise was strongly influenced by wave at lower frequency and by wind at higher frequency up to over 1 kHz. The higher frequency range over 10 kHz was influenced by rainfall and biological sources, and the spectrum was measured about 10 dB higher than the peak spectrum level from Wenz curve at this frequency range.

A Study on the Performance and Flow Distribution of Fresh Water Generator with Plate Heat Exchanger

  • Jin, Zhen-Hua;Kim, Pil-Hwan;Lee, Gyeong-Hwan;Choi, Soon-Ho;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.611-617
    • /
    • 2008
  • Nowadays Plate Heat Exchanger (PHE) is widely used in different industries such as chemical, food and pharmaceutical process and refrigeration due to the efficient heat transfer performance, extreme compact design and efficient use of the construction material. In present study, discussed main conception of plate heat exchanger and applied in vacuum. PHE and aimed apply in the fresh water generator which installed in ship to desalinate seawater to fresh water use heat from engines. The experiment is proceeded to investigate the heat transfer between cold and hot fluid stream at different flow rate and supply temperature of hot fluid. Generated fresh water as outcome of the system. PHE is an important part of a condensing or evaporating system. One of common assumptions in basic heat exchanger design theory is that fluid is to be distributed uniformly at the inlet of each fluid side and throughout the core. However, in practice, flow mal-distribution is more common and can significantly reduce the heat exchanger performance. The flow and heat transfer are simulated by the k-$\varepsilon$ standard turbulence model. Moreover, the simulation contacted flow maldistribution in a PHE with 6 channels.

  • PDF

A Study on the Installation of SCR System for Generator Diesel Engine of Existing Ship (기존 선박의 디젤발전기용 SCR 시스템 설치에 관한 연구)

  • Ryu, Younghyun;Kim, Hongryeol;Cho, Gyubaek;Kim, Hongsuk;Nam, Jeonggil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.412-417
    • /
    • 2015
  • The IMO MEPC has been increasingly strengthening the emission standard for marine environment protection. In particular, nitrogen oxide (NOx) emissions of all ocean-going ships built from 2016 will be required to comply with the Tier-III regulation. In this study, a vanadia based SCR (Selective Catalytic Reduction) system developed for ship application was installed on a diesel engine for power generation of the training ship T/S SAENURI in Mokpo National Maritime University. For the present study, the exhaust pipeline of the generator diesel engine was modified to fit the urea SCR system. This study investigated the NOx reduction performance according to the two kind of injection method of urea solution (40%): Auto mode through the PLC (Programable Logic Control) and Manual mode. We were able to find the ammonia slip conditions when in manual mode method. So, the optimal urea injection quantity can be controlled at each engine load (25, 35, 50%) condition. It was achieved 80% reduction on nitrogen oxide. Furthermore, we found that the NOx reduction performance was better with the load up-down (while down to 25% from 50%) than the load down-up (while up to 50% from 25%) test.