• Title/Summary/Keyword: Mapping error

Search Result 449, Processing Time 0.026 seconds

A Study on Development of System for Prediction of the Optimal Bead Width on Robotic GMA Welding (로봇 GMA용접에 최적의 비드폭 예측 시스템 개발에 관한 연구)

  • 김일수
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.6
    • /
    • pp.57-63
    • /
    • 1998
  • An adaptive control in the robotic GMA welding is employed to monitor information about weld characteristics and process parameters as well as to modify those parameters to hold weld quality within acceptable limits. Typical characteristics are the bead geometry, composition, microstructure, appearance, and process parameters which govern the quality of the final weld. The main objectives of this thesis are to realize the mapping characteristics of bead width through learning. After learning, the neural estimation can estimate the bead width desired form the learning mapping characteristic. The design parameters of the neural network estimator(the number of hidden layers and the number of nodes in a layer) are chosen from an estimation error analysis. A series of bead of bead-on-plate GMA welding experiments was carried out in order to verify the performance of the neural network estimator. The experimental results show that the proposed neural network estimator can predict the bead width with reasonable accuracy and guarantee the uniform weld quality.

  • PDF

Blank Design System for Sheet Forming (박판성형의 초기소재 설계시스템)

  • 김두현;이정민;박상후;양동열;김용환
    • Transactions of Materials Processing
    • /
    • v.6 no.5
    • /
    • pp.400-407
    • /
    • 1997
  • Geometric mapping technique has been used to find the shape of initial blank for sheet forming. The method was chosen because of its simplicity and numerical efficiency. Error in blank shape were measured along deformation path by FE analysis of forming. Blank shape was modified by volume additionaddition/Subtractiontraction method with taking with taking into account of deformation path. Modified blank shape shows an acceptable result, showing the current method can be an useful tool for predicting blank shape in the practical application. More test will be done to verify the validity of the method.

  • PDF

A Study on Surface Flattening for 3 Dimensional Shoe Pattern Design (신발패턴의 3차원 설계를 위한 곡면의 평면전개에 관한 연구)

  • Song S. J.;Kim S. H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.3
    • /
    • pp.266-275
    • /
    • 2004
  • In this paper, a method for generating the planar developments of three-dimensional shoe upper surfaces is proposed. This method is based on the optimization technique minimizing the geometric error occurred on the developed planar surface. Additionally, a rapid mapping algorithm to transform a curve on flattened plane to original surface (or vice versa) is proposed. These techniques are implemented on the 2D/3D integrated shoe design system. Using this system, a prototype running shoe can be designed more precisely and can be manufactured more quickly.

A Study on the Generation of Initial Shape for the Initiation of Optimal Blank Design Sequence (최적블랭크 설계를 위한 초기형상 생성에 관한 연구)

  • 심현보;장상득;박종규
    • Transactions of Materials Processing
    • /
    • v.13 no.1
    • /
    • pp.90-101
    • /
    • 2004
  • An inverse mosaic method has been proposed to generate an initial blank shape from the final product shape. Differently from the geometric mapping method, the method can handle triangular patches. However, the generated blank shape is strongly dependent on the order of determination of nodes. In order to compensate the dependency error smoothing technique has been also developed. Although the accuracy has been improved greatly compared with the geometrical mapping method, the method has limitation, due to the no incorporation of plasticity theory. Even though the accuracy of the radius vector method is already proved. the method requires initial guess to start the method. In order to compromise the limitation of the present method and the radius vector method, the method has been connected to the radius vector method. The efficiency of the present optimal blank design method has been verified with some chosen examples.

THE EFFECTS OF UNCERTAIN TOPOGRAPHIC DATA ON SPATIAL PREDICTION OF LANDSLIDE HAZARD

  • Park, No-Wook;Kyriakidis, Phaedon C.
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.259-261
    • /
    • 2008
  • GIS-based spatial data integration tasks have used exhaustive thematic maps generated from sparsely sampled data or satellite-based exhaustive data. Due to a simplification of reality and error in mapping procedures, such spatial data are usually imperfect and of different accuracy. The objective of this study is to carry out a sensitivity analysis in connection with input topographic data for landslide hazard mapping. Two different types of elevation estimates, elevation spot heights and a DEM from ASTER stereo images are considered. The geostatistical framework of kriging is applied for generating more reliable elevation estimates from both sparse elevation spot heights and exhaustive ASTER-based elevation values. The effects of different accuracy arising from different terrain-related maps on the prediction performance of landslide hazard are illustrated from a case study of Boeun, Korea.

  • PDF

J-integral calculation by domain integral technique using adaptive finite element method

  • Phongthanapanich, Sutthisak;Potjananapasiri, Kobsak;Dechaumphai, Pramote
    • Structural Engineering and Mechanics
    • /
    • v.28 no.4
    • /
    • pp.461-477
    • /
    • 2008
  • An adaptive finite element method for analyzing two-dimensional and axisymmetric nonlinear elastic fracture mechanics problems with cracks is presented. The J-integral is used as a parameter to characterize the severity of stresses and deformation near crack tips. The domain integral technique, for which all relevant quantities are integrated over any arbitrary element areas around the crack tips, is utilized as the J-integral solution scheme with 9-node degenerated crack tip elements. The solution accuracy is further improved by incorporating an error estimation procedure onto a remeshing algorithm with a solution mapping scheme to resume the analysis at a particular load level after the adaptive remeshing technique has been applied. Several benchmark problems are analyzed to evaluate the efficiency of the combined domain integral technique and the adaptive finite element method.

Two-Phase Neuro-System Identification Based on Artificial System (모조 시스템 형성에 기반한 2단계 뉴로 시스템 인식)

  • 배재호;왕지남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.3
    • /
    • pp.107-118
    • /
    • 1998
  • Two-phase neuro-system identification method is presented. The 1$^{st}$-phase identification uses conventional neural network mapping for modeling an input-output system. The 2$^{nd}$ -phase modeling is also performed sequentially using the 1$^{st}$-phase modeling errors. In the 2$^{nd}$ a phase modeling, newly generated input signals, which are obtained by summing the 1st-phase modeling error and artificially generated uniform series, are utilized as system's I-O mapping elements. The 1$^{st}$-phase identification is interpreted as a “Real Model” system identification because it uses system's real data(i.e., observations and control inputs) while the 2$^{nd}$ -phase identification as a “Artificial Model” identification because of using artificial data. Experimental results are given to verify that the two-phase neuro-system identification could reduce the overall modeling errors.rrors.

  • PDF

Surface Deformation Using Guide Surfaces (가이드 곡면을 이용한 곡명의 변형)

  • Kim, Sung-Hwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.6
    • /
    • pp.441-451
    • /
    • 2007
  • In this paper, the method to modify a surface through three dimensional vector field technique is presented, In this method two guide surfaces are required as a shape reference. One is the shape of original surface, the other is the target shape for the result surface. Proposed method is consists of two steps. The first step is to calculate the mapping points on original and target guide surfaces so that the shape error may be minimized. The second step is to construct the smooth vector field from mapping points of the first step. The developed method is applied to shoe design system which makes the surface modeling very easy and effective.

Modeling pediatric tumor risks in Florida with conditional autoregressive structures and identifying hot-spots

  • Kim, Bit;Lim, Chae Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1225-1239
    • /
    • 2016
  • We investigate pediatric tumor incidence data collected by the Florida Association for Pediatric Tumor program using various models commonly used in disease mapping analysis. Particularly, we consider Poisson normal models with various conditional autoregressive structure for spatial dependence, a zero-in ated component to capture excess zero counts and a spatio-temporal model to capture spatial and temporal dependence, together. We found that intrinsic conditional autoregressive model provides the smallest Deviance Information Criterion (DIC) among the models when only spatial dependence is considered. On the other hand, adding an autoregressive structure over time decreases DIC over the model without time dependence component. We adopt weighted ranks squared error loss to identify high risk regions which provides similar results with other researchers who have worked on the same data set (e.g. Zhang et al., 2014; Wang and Rodriguez, 2014). Our results, thus, provide additional statistical support on those identied high risk regions discovered by the other researchers.

Reducing the PAPR of OFDM Systems by Random Variable Transformation

  • Taher, Montadar Abas;Singh, Mandeep Jit;Ismail, Mahamod Bin;Samad, Salina Abdul;Islam, Mohammad Tariqul
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.714-717
    • /
    • 2013
  • Peak power reduction techniques in orthogonal frequency division multiplexing (OFDM) has been an important subject for many researchers for over 20 years. In this letter, we propose a side-information-free technique that is based on the concept of random variable (RV) transformation. The suggested method transforms RVs into other RVs, aiming to reshape the constellation that will consequently produce OFDM symbols with a reduced peak-to-average power ratio. The proposed method has no limitation on the mapping type or the mapping order and has no significant effect on the bit error rate performance compared to other methods presented in the literature. Additionally, the computational complexity does not increase.