• Title/Summary/Keyword: Mapping algorithm

Search Result 1,091, Processing Time 0.034 seconds

Data Congestion Control Using Drones in Clustered Heterogeneous Wireless Sensor Network (클러스터된 이기종 무선 센서 네트워크에서의 드론을 이용한 데이터 혼잡 제어)

  • Kim, Tae-Rim;Song, Jong-Gyu;Im, Hyun-Jae;Kim, Bum-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.12-19
    • /
    • 2020
  • The clustered heterogeneous wireless sensor network is comprised of sensor nodes and cluster heads, which are hierarchically organized for different objectives. In the network, we should especially take care of managing node resources to enhance network performance based on memory and battery capacity constraints. For instances, if some interesting events occur frequently in the vicinity of particular sensor nodes, those nodes might receive massive amounts of data. Data congestion can happen due to a memory bottleneck or link disconnection at cluster heads because the remaining memory space is filled with those data. In this paper, we utilize drones as mobile sinks to resolve data congestion and model the network, sensor nodes, and cluster heads. We also design a cost function and a congestion indicator to calculate the degree of congestion. Then we propose a data congestion map index and a data congestion mapping scheme to deploy drones at optimal points. Using control variable, we explore the relationship between the degree of congestion and the number of drones to be deployed, as well as the number of drones that must be below a certain degree of congestion and within communication range. Furthermore, we show that our algorithm outperforms previous work by a minimum of 20% in terms of memory overflow.

News Video Shot Boundary Detection using Singular Value Decomposition and Incremental Clustering (특이값 분해와 점증적 클러스터링을 이용한 뉴스 비디오 샷 경계 탐지)

  • Lee, Han-Sung;Im, Young-Hee;Park, Dai-Hee;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.2
    • /
    • pp.169-177
    • /
    • 2009
  • In this paper, we propose a new shot boundary detection method which is optimized for news video story parsing. This new news shot boundary detection method was designed to satisfy all the following requirements: 1) minimizing the incorrect data in data set for anchor shot detection by improving the recall ratio 2) detecting abrupt cuts and gradual transitions with one single algorithm so as to divide news video into shots with one scan of data set; 3) classifying shots into static or dynamic, therefore, reducing the search space for the subsequent stage of anchor shot detection. The proposed method, based on singular value decomposition with incremental clustering and mercer kernel, has additional desirable features. Applying singular value decomposition, the noise or trivial variations in the video sequence are removed. Therefore, the separability is improved. Mercer kernel improves the possibility of detection of shots which is not separable in input space by mapping data to high dimensional feature space. The experimental results illustrated the superiority of the proposed method with respect to recall criteria and search space reduction for anchor shot detection.

An Efficient Frequent Melody Indexing Method to Improve Performance of Query-By-Humming System (허밍 질의 처리 시스템의 성능 향상을 위한 효율적인 빈번 멜로디 인덱싱 방법)

  • You, Jin-Hee;Park, Sang-Hyun
    • Journal of KIISE:Databases
    • /
    • v.34 no.4
    • /
    • pp.283-303
    • /
    • 2007
  • Recently, the study of efficient way to store and retrieve enormous music data is becoming the one of important issues in the multimedia database. Most general method of MIR (Music Information Retrieval) includes a text-based approach using text information to search a desired music. However, if users did not remember the keyword about the music, it can not give them correct answers. Moreover, since these types of systems are implemented only for exact matching between the query and music data, it can not mine any information on similar music data. Thus, these systems are inappropriate to achieve similarity matching of music data. In order to solve the problem, we propose an Efficient Query-By-Humming System (EQBHS) with a content-based indexing method that efficiently retrieve and store music when a user inquires with his incorrect humming. For the purpose of accelerating query processing in EQBHS, we design indices for significant melodies, which are 1) frequent melodies occurring many times in a single music, on the assumption that users are to hum what they can easily remember and 2) melodies partitioned by rests. In addition, we propose an error tolerated mapping method from a note to a character to make searching efficient, and the frequent melody extraction algorithm. We verified the assumption for frequent melodies by making up questions and compared the performance of the proposed EQBHS with N-gram by executing various experiments with a number of music data.

An Emulation System for Efficient Verification of ASIC Design (ASIC 설계의 효과적인 검증을 위한 에뮬레이션 시스템)

  • 유광기;정정화
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.10
    • /
    • pp.17-28
    • /
    • 1999
  • In this paper, an ASIC emulation system called ACE (ASIC Emulator) is proposed. It can produce the prototype of target ASIC in a short time and verify the function of ASIC circuit immediately The ACE is consist of emulation software in which there are EDIF reader, library translator, technology mapper, circuit partitioner and LDF generator and emulation hardware including emulation board and logic analyzer. Technology mapping is consist of three steps such as circuit partitioning and extraction of logic function, minimization of logic function and grouping of logic function. During those procedures, the number of basic logic blocks and maximum levels are minimized by making the output to be assigned in a same block sharing product-terms and input variables as much as possible. Circuit partitioner obtain chip-level netlists satisfying some constraints on routing structure of emulation board as well as the architecture of FPGA chip. A new partitioning algorithm whose objective function is the minimization of the number of interconnections among FPGA chips and among group of FPGA chips is proposed. The routing structure of emulation board take the advantage of complete graph and partial crossbar structure in order to minimize the interconnection delay between FPGA chips regardless of circuit size. logic analyzer display the waveform of probing signal on PC monitor that is designated by user. In order to evaluate the performance of the proposed emulation system, video Quad-splitter, one of the commercial ASIC, is implemented on the emulation board. Experimental results show that it is operated in the real time of 14.3MHz and functioned perfectly.

  • PDF

3D Track Models Generation and Applications Based on LiDAR Data for Railway Route Management (철도노선관리에서의 LIDAR 데이터 기반의 3차원 궤적 모델 생성 및 적용)

  • Yeon, Sang-Ho;Lee, Young-Dae
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1099-1104
    • /
    • 2007
  • The visual implementation of 3-dimensional national environment is focused by the requirement and importance in the fields such as, national development plan, telecommunication facility deployment plan, railway construction, construction engineering, spatial city development, safety and disaster prevention engineering. The currently used DEM system using contour lines, which embodies national geographic information based on the 2-D digital maps and facility information has limitation in implementation in reproducing the 3-D spatial city. Moreover, this method often neglects the altitude of the rail way infrastructure which has narrow width and long length. There it is needed to apply laser measurement technique in the spatial target object to obtain accuracy. Currently, the LiDAR data which combines the laser measurement skill and GPS has been introduced to obtain high resolution accuracy in the altitude measurement. In this paper, we first investigate the LiDAR based researches in advanced foreign countries, then we propose data a generation scheme and an algorithm for the optimal manage and synthesis of railway facility system in our 3-D spatial terrain information. For this object, LiDAR based height data transformed to DEM, and the realtime unification of the vector via digital image mapping and raster via exactness evaluation is transformed to make it possible to trace the model of generated 3-dimensional railway model with long distance for 3D tract model generation.

  • PDF

Functional MR Imaging of Cerebral Motor Cortex on 3 Tesla MR Imaging : Comparison between Gradient and Spin-Echo EPI Techniques (3T에서 뇌 운동피질의 기능적 자기공명영상 연구 : Gradient-Echo와 Spin-Echo EPI의 비교)

  • Goo, Eeu-Hoe;Chang, Hye-Won;Chung, Hwan
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.9 no.2
    • /
    • pp.31-38
    • /
    • 2007
  • To evaluate the accuracy and extent in the localization of cerebral motor coutex activation using a gradient- echo echo planar imaging(GE-EPI) compared to spin-echo echo planar iimaging(SE-EPI) on 3T MR imaging. Functional MR imaging of cerebral motor cortex activation was examined in GE-EPI and SE-EPI in five healthy male volunteers. A right finger movement was accomplished with a paradigm of 6 task and rest, periods and the cross-correlation was used for a statistical mapping algorithm. We evaluated any sorts of differenced of the time seried and the signal intensity changes between the rest and task periods obtained with two technoques. The qualitative analysis was distributed with activation sites of large veins and small veins by using two techniques and was found that both the techniques were clinically uesful for delineating large veins and small veins in fMRL Signal intensity charge of the rest and activation periods provided simmilar activations in both methods(GE-EPI : 0.93$\pm$0.11, SE-EPI : 0.80$\pm$.015) but the signal intensity in GE-EPI(133.95$\pm$15.76) was larger than in SE-EPI(74.5$\pm$18.90). The average SNRs of EPI raw data were higher at SMA in SE-EPI(48.54$\pm$12.37) than GE-EPI(41.4$\pm$12.54) and at M1 in SE-EPI(43.24$\pm$11.77) than GE-EPI(38.27$\pm$6.53). The localization of activation voxels of the GE-EPI showed a larger vein but the SE-EPI generally showed small vein. Then the analysis results of the two techniques were used for a statistacal paired student t-test. SE-EPI was found clinically useful for localizing the cerebral moter cortex cativation on 3.0T, but showed a little different activation patterns comparad to GE-EPI. In conclusion, SE-EPI may be feasible and can detect true cortical activation from capillaries and GE-EPI can obtain the large veins in the motor cortex activation on 3T MR imaging.

  • PDF

R-Tree Construction for The Content Based Publish/Subscribe Service in Peer-to-peer Networks (피어투피어 네트워크에서의 컨텐츠 기반 publish/subscribe 서비스를 위한 R-tree구성)

  • Kim, Yong-Hyuck;Kim, Young-Han;Kang, Nam-Hi
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.11
    • /
    • pp.1-11
    • /
    • 2009
  • A content based pub/sub (Publish/subscribe) services at the peer-to-peer network has the requirements about how to distribute contents information of subscriber and to delivery the events efficiently. For satisfying the requirements, a DHT(Distributed Hash Table) based pub/sub overlay networking and tree type topology based network construction using filter technique have been proposed. The DHT based technique is suitable for topic based pub/sub service but it's not good contents based service that has the variable requirements. And also filter based tree topology networking is not efficient at the environment where the user requirements are distributed. In this paper we propose the R-Tree algorithm based pub/sub overlay network construction method. The proposed scheme provides cost effective event delivery method by mapping user requirement to multi-dimension and hierarchical grouping of the requirements. It is verified by simulation at the variable environment of user requirements and events.

A Conceptual Design of Maintenance Information System Interlace for Real-Time Diagnosis of Driverless EMU (무인전동차의 실시간 상태 진단을 위한 유지보수 정보시스템 인터페이스에 대한 개념설계)

  • Han, Jun-hee;Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.63-68
    • /
    • 2017
  • Although automated metro subway systems have the advantage of operating a train without a train driver, it is difficult to detect an immediate fault condition and take countermeasures when an unusual situation occurs. Therefore, it is important to construct a maintenance information system (MIS) that detects the vehicle failure/status information in real time and maintains it efficiently in the depot of the railway's vehicles. This paper proposes a conceptual design method that realizes the interface between the train control system (TCS), the operation control center train control monitoring system (OCC-TCMS) console, and the MIS using wireless communication network in real-time. To transmit a large amount of information on 800,000 occurrences per day during operation, data was collected in a 56 byte data table using a data processing algorithm. This state information was classified into 4 hexadecimal codes and transmitted to the MIS by mapping the status and the fault information on the vehicle during the main line operation. Furthermore, the transmission and reception data were examined in real time between the TCS and MIS, and the implementation of the failure information screen was then displayed.

Classification of Magnetic Resonance Imagery Using Deterministic Relaxation of Neural Network (신경망의 결정론적 이완에 의한 자기공명영상 분류)

  • 전준철;민경필;권수일
    • Investigative Magnetic Resonance Imaging
    • /
    • v.6 no.2
    • /
    • pp.137-146
    • /
    • 2002
  • Purpose : This paper introduces an improved classification approach which adopts a deterministic relaxation method and an agglomerative clustering technique for the classification of MRI using neural network. The proposed approach can solve the problems of convergency to local optima and computational burden caused by a large number of input patterns when a neural network is used for image classification. Materials and methods : Application of Hopfield neural network has been solving various optimization problems. However, major problem of mapping an image classification problem into a neural network is that network is opt to converge to local optima and its convergency toward the global solution with a standard stochastic relaxation spends much time. Therefore, to avoid local solutions and to achieve fast convergency toward a global optimization, we adopt MFA to a Hopfield network during the classification. MFA replaces the stochastic nature of simulated annealing method with a set of deterministic update rules that act on the average value of the variable. By minimizing averages, it is possible to converge to an equilibrium state considerably faster than standard simulated annealing method. Moreover, the proposed agglomerative clustering algorithm which determines the underlying clusters of the image provides initial input values of Hopfield neural network. Results : The proposed approach which uses agglomerative clustering and deterministic relaxation approach resolves the problem of local optimization and achieves fast convergency toward a global optimization when a neural network is used for MRI classification. Conclusion : In this paper, we introduce a new paradigm to classify MRI using clustering analysis and deterministic relaxation for neural network to improve the classification results.

  • PDF

Community Patterning of Bethic Macroinvertebrates in Streams of South Korea by Utilizing an Artificial Neural Network (인공신경망을 이용한 남한의 저서성 대형 무척추동물 군집 유형)

  • Kwak, Inn-Sil;Liu, Guangchun;Park, Young-Seuk;Chon, Tae-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.3 s.91
    • /
    • pp.230-243
    • /
    • 2000
  • A large-scale community data were patterned by utilizing an unsupervised learning algorithm in artificial neural networks. Data for benthic macroinvertebrates in streams of South Korea reported in publications for 12 years from 1984 to 1995 were provided as inputs for training with the Kohonen network. Taxa included for the training were 5 phylum, 10 class, 26 order, 108 family and 571 species in 27 streams. Abundant groups were Diptera, Ephemeroptera, Trichoptera, Plecoptera, Coleoptera, Odonata, Oligochaeta, and Physidae. A wide spectrum of community compositions was observed: a few tolerant taxa were collected at polluted sites while a high species richness was observed at relatively clean sites. The trained mapping by the Kohonen network effectively showed patterns of communities from different river systems, followed by patterns of communities from different environmental disturbances. The training by the proposed artificial neural network could be an alternative for organizing community data in a large-scale ecological survey.

  • PDF