• Title/Summary/Keyword: Mapping algorithm

Search Result 1,091, Processing Time 0.033 seconds

LMS-based Edutech Teaching and Learning Platform Model Design Study (LMS 기반 에듀테크 교수학습 플랫폼 모형 설계 연구)

  • Yoon, Seung­-Bae;Yang, Seung Hyuk;Park, Hyunsoon
    • Journal of Digital Convergence
    • /
    • v.19 no.10
    • /
    • pp.29-38
    • /
    • 2021
  • Purpose: This is a study to design an optimal Edutech teaching-learning platform model that can be linked with various types of LMS to activate e-learning. Methods: For this purpose, the contents of e-learning systems that can be used in the 4th industrial technology of cyber universities and general universities were cross-sectionally analyzed. Results: Cyber universities relied entirely on LMS, and general universities supplemented and utilized different Edutech methods for each professor such as Google Classroom, Zoom video communication, and YouTube in addition to LMS. It was considered that it would be meaningful to provide a minimal algorithm mapping to LMS to share metadata such as Google and YouTube for the Edutech teaching and learning platform model. Conclusion: Therefore, this study is expected to contribute to the improvement of teaching methods and academic achievement through the LMS-based Edutech teaching and learning platform model.

Ocean Optical Properties of Equatorial Pacific Reef Habitat (적도 태평양 산호초 서식지의 해수 반사도 특성)

  • Moon, Jeong-Eon;Choi, Jong-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.615-625
    • /
    • 2021
  • The coastal areas around Palau Island and Tonga Island, near the Pacific equator, consist of coral reefs, mangrove and seaweed. In particular, understanding the optical properties of sea surface water in coral reef habitats helps improve the accuracy of remote sensing based habitat mapping and identify tropical ecosystem characteristics. Here, we collected spectral characteristics of sea surface water of Palau Island and Tonga Island and analyzed the concentration of suspended matters, absorption coefficient, and remote sensing reflectance to understand the seawater characteristics of the coral reef habitats. Based on the results of the suspended matter concentration analysis, we developed and verified an empirical algorithm to derive the concentration from satellite data using remote sensing reflectance of three bands, 555, 625, 660 nm, showed a high determinant coefficient, 0.98. In conclusion, coral reef habitats in tropical regions are characterized by CASE-I water in terms of the marine optics with oligotrophic properties, and require monitoring using continuous collection and analysis of field data.

Spectogram analysis of active power of appliances and LSTM-based Energy Disaggregation (다수 가전기기 유효전력의 스팩토그램 분석 및 LSTM기반의 전력 분해 알고리즘)

  • Kim, Imgyu;Kim, Hyuncheol;Kim, Seung Yun;Shin, Sangyong
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.21-28
    • /
    • 2021
  • In this study, we propose a deep learning-based NILM technique using actual measured power data for 5 kinds of home appliances and verify its effectiveness. For about 3 weeks, the active power of the central power measuring device and five kinds of home appliances (refrigerator, induction, TV, washing machine, air cleaner) was individually measured. The preprocessing method of the measured data was introduced, and characteristics of each household appliance were analyzed through spectogram analysis. The characteristics of each household appliance are organized into a learning data set. All the power data measured by the central power measuring device and 5 kinds of home appliances were time-series mapping, and training was performed using a LSTM neural network, which is excellent for time series data prediction. An algorithm that can disaggregate five types of energies using only the power data of the main central power measuring device is proposed.

Mapping of Post-Wildfire Burned Area Using KOMPSAT-3A and Sentinel-2 Imagery: The Case of Sokcho Wildfire, Korea

  • Nur, Arip Syaripudin;Park, Sungjae;Lee, Kwang-Jae;Moon, Jiyoon;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1551-1565
    • /
    • 2020
  • On April 4, 2019, a forest fire started in Goseong County and lasted for three days, burning the neighboring areas of Sokcho. The strong winds moved the blaze from one region to another region and declared the worst wildfire in South Korea in years. More than 1,880 facilities, including 400 homes, were burnt down. The fire burned a total area of 529 hectares (1,307 acres), which involved 13,000 rescuers and 16,500 military troops to control the fire occurrence. Thousands of people were evacuated, and two people are dead. This study generated post-wildfire maps to provide necessary data for evacuation and mitigation planning to respond to this destructive wildfire, also prevent further damage and restore the area affected by the wildfire. This study used KOMPSAT-3A and Sentinel-2 imagery to map the post-wildfire condition. The SVM showed higher accuracy (overall accuracy 95.29%) compared with ANN (overall accuracy of 94.61%) for the KOMPSAT-3A. Moreover, for Sentinel-2, the SVM attained a higher accuracy (overall accuracy of 91.52%) than the ANN algorithm (overall accuracy 90.11%). In total, four post-wildfire burned area maps were generated; these results can be used to assess the area affected by the Sokcho wildfire and wildfire mitigation planning in the future.

A lightweight technique for hot data identification considering the continuity of a Nand flash memory system (낸드 플래시 메모리 시스템 기반의 지속성을 고려한 핫 데이터 식별 경량 기법)

  • Lee, Seungwoo
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.5
    • /
    • pp.77-83
    • /
    • 2022
  • Nand flash memory requires an Erase-Before-Write operation structurally. In order to solve this problem, it can be solved by classifying a page (hot data page) where data update operation occurs frequently and storing it in a separate block. The MHF (Multi Hash Function Framework) technique records the frequency of data update requests in the system memory, and when the recorded value exceeds a certain standard, the data update request is judged as hot data. However, the method of simply counting only the frequency of the data update request has a limit in judging it as accurate hot data. In addition, in the case of a technique that determines the persistence of a data update request, the fact of the update request is recorded sequentially based on a time interval and then judged as hot data. In the case of such a persistence-based method, its implementation and operation are complicated, and there is a problem of inaccurate judgment if frequency is not considered in the update request. This paper proposes a lightweight hot data determination technique that considers both frequency and persistence in data update requests.

Improved Hot data verification considering the continuity and frequency of data update requests (데이터 갱신요청의 연속성과 빈도를 고려한 개선된 핫 데이터 검증기법)

  • Lee, Seungwoo
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.5
    • /
    • pp.33-39
    • /
    • 2022
  • A storage device used in the mobile computing field should have low power, light weight, durability, etc., and should be able to effectively store and manage large-capacity data generated by users. NAND flash memory is mainly used as a storage device in the field of mobile computing. Due to the structural characteristics of NAND flash memory, it is impossible to overwrite in place when a data update request is made, so it can be solved by accurately separating requests that frequently request data update and requests that do not, and storing and managing them in each block. The classification method for such a data update request is called a hot data identification method, and various studies have been conducted at present. This paper continuously records the occurrence of data update requests using a counting filter for more accurate hot data validation, and also verifies hot data by considering how often the requested update requests occur during a specific time.

A Transformation Technique for Constraints-preserving of XML Data (XML 데이터의 제약조건 보존을 위한 변환 기법)

  • Cho, Jung-Gil;Keum, Young-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.5
    • /
    • pp.1-9
    • /
    • 2009
  • Many techniques have been proposed to store efficiently and query XML data. One way achieving this goal is using relational database by transforming XML data into relational format. But most researches only transformed content and structure of XML schema. Although they transformed semantic constrainment of XML schema, they did not all of semantics. In this paper, we propose a systematic technique for extracting semantic constrainment from XML schema and storing method when the extracting result is transformed into relational schema without any lost of semantic constrainment. The transforming algorithm is used for extracting and storing semantic constrainment from XML schema and it shows how extracted information is stored according to schema notation. Also it provides semantic knowledges that are needed to be confirmed during the transformation to ensure a correct relation schema. The technique can reduce storage redundancy and can keep up content and structure with integrity constraints.

Mobile Robot Localization in Geometrically Similar Environment Combining Wi-Fi with Laser SLAM

  • Gengyu Ge;Junke Li;Zhong Qin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.5
    • /
    • pp.1339-1355
    • /
    • 2023
  • Localization is a hot research spot for many areas, especially in the mobile robot field. Due to the weak signal of the global positioning system (GPS), the alternative schemes in an indoor environment include wireless signal transmitting and receiving solutions, laser rangefinder to build a map followed by a re-localization stage and visual positioning methods, etc. Among all wireless signal positioning techniques, Wi-Fi is the most common one. Wi-Fi access points are installed in most indoor areas of human activities, and smart devices equipped with Wi-Fi modules can be seen everywhere. However, the localization of a mobile robot using a Wi-Fi scheme usually lacks orientation information. Besides, the distance error is large because of indoor signal interference. Another research direction that mainly refers to laser sensors is to actively detect the environment and achieve positioning. An occupancy grid map is built by using the simultaneous localization and mapping (SLAM) method when the mobile robot enters the indoor environment for the first time. When the robot enters the environment again, it can localize itself according to the known map. Nevertheless, this scheme only works effectively based on the prerequisite that those areas have salient geometrical features. If the areas have similar scanning structures, such as a long corridor or similar rooms, the traditional methods always fail. To address the weakness of the above two methods, this work proposes a coarse-to-fine paradigm and an improved localization algorithm that utilizes Wi-Fi to assist the robot localization in a geometrically similar environment. Firstly, a grid map is built by using laser SLAM. Secondly, a fingerprint database is built in the offline phase. Then, the RSSI values are achieved in the localization stage to get a coarse localization. Finally, an improved particle filter method based on the Wi-Fi signal values is proposed to realize a fine localization. Experimental results show that our approach is effective and robust for both global localization and the kidnapped robot problem. The localization success rate reaches 97.33%, while the traditional method always fails.

Energy-efficient intrusion detection system for secure acoustic communication in under water sensor networks

  • N. Nithiyanandam;C. Mahesh;S.P. Raja;S. Jeyapriyanga;T. Selva Banu Priya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1706-1727
    • /
    • 2023
  • Under Water Sensor Networks (UWSN) has gained attraction among various communities for its potential applications like acoustic monitoring, 3D mapping, tsunami detection, oil spill monitoring, and target tracking. Unlike terrestrial sensor networks, it performs an acoustic mode of communication to carry out collaborative tasks. Typically, surface sink nodes are deployed for aggregating acoustic phenomena collected from the underwater sensors through the multi-hop path. In this context, UWSN is constrained by factors such as lower bandwidth, high propagation delay, and limited battery power. Also, the vulnerabilities to compromise the aquatic environment are in growing numbers. The paper proposes an Energy-Efficient standalone Intrusion Detection System (EEIDS) to entail the acoustic environment against malicious attacks and improve the network lifetime. In EEIDS, attributes such as node ID, residual energy, and depth value are verified for forwarding the data packets in a secured path and stabilizing the nodes' energy levels. Initially, for each node, three agents are modeled to perform the assigned responsibilities. For instance, ID agent verifies the node's authentication of the node, EN agent checks for the residual energy of the node, and D agent substantiates the depth value of each node. Next, the classification of normal and malevolent nodes is performed by determining the score for each node. Furthermore, the proposed system utilizes the sheep-flock heredity algorithm to validate the input attributes using the optimized probability values stored in the training dataset. This assists in finding out the best-fit motes in the UWSN. Significantly, the proposed system detects and isolates the malicious nodes with tampered credentials and nodes with lower residual energy in minimal time. The parameters such as the time taken for malicious node detection, network lifetime, energy consumption, and delivery ratio are investigated using simulation tools. Comparison results show that the proposed EEIDS outperforms the existing acoustic security systems.

Evaluating LIMU System Quality with Interval Evidence and Input Uncertainty

  • Xiangyi Zhou;Zhijie Zhou;Xiaoxia Han;Zhichao Ming;Yanshan Bian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.11
    • /
    • pp.2945-2965
    • /
    • 2023
  • The laser inertial measurement unit is a precision device widely used in rocket navigation system and other equipment, and its quality is directly related to navigation accuracy. In the quality evaluation of laser inertial measurement unit, there is inevitably uncertainty in the index input information. First, the input numerical information is in interval form. Second, the index input grade and the quality evaluation result grade are given according to different national standards. So, it is a key step to transform the interval information input by the index into the data form consistent with the evaluation result grade. In the case of uncertain input, this paper puts forward a method based on probability distribution to solve the problem of asymmetry between the reference grade given by the index and the evaluation result grade when evaluating the quality of laser inertial measurement unit. By mapping the numerical relationship between the designated reference level and the evaluation reference level of the index information under different distributions, the index evidence symmetrical with the evaluation reference level is given. After the uncertain input information is transformed into evidence of interval degree distribution by this method, the information fusion of interval degree distribution evidence is carried out by interval evidential reasoning algorithm, and the evaluation result is obtained by projection covariance matrix adaptive evolution strategy optimization. Taking a five-meter redundant laser inertial measurement unit as an example, the applicability and effectiveness of this method are verified.