• Title/Summary/Keyword: Manufacturing system in plants

Search Result 134, Processing Time 0.028 seconds

Hierarchical Evaluation of Flexibility in Production Systems

  • Tsuboner, Hitoshi;Ichimura, Tomotaka;Horikawa, Mitsuyoshi;Sugawara, Mitsumasa
    • Industrial Engineering and Management Systems
    • /
    • v.3 no.1
    • /
    • pp.52-58
    • /
    • 2004
  • This report examines the issue of designing an efficient production system by increasing several types of flexibility. Increasing manufacturing flexibility is a key strategy for efficiently improving market responsiveness in the face of uncertain market demand for final products. The manufacturing system comprises multiple plants, of which individual plants have multiple manufacturing lines that are designed to produce limited types of products in accordance with their size and materials. Imbalance in the workload occurs among plants as well as among manufacturing lines because of fluctuations in market demand for final products. Thereby, idleness of some manufacturing lines and longer lead times in some manufacturing lines occur as a result of the high workload. We clarify how these types of flexibility affect manufacturing performance by improving only one type of flexibility or by improving multiple types of flexibility simultaneously. The average lead time and the imbalance in workload are adopted as measures of manufacturing performance. Three types of manufacturing flexibility are interrelated: machine flexibility, routing flexibility, and process flexibility. Machine flexibility refers to the various types of operations that a machine can perform without requiring the prohibitive effort of switching from one order to another. Routing flexibility is the capability of processing a given set of part types using more than one line (alternative line) in the plant. Process flexibility results from being able to build different types of final products at the same plant.

A Study on the Actual Condition Survey of Apartment Rebar Work (공동주택 철근공사의 실태조사에 관한 연구)

  • Lee, Taick-Oun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.2
    • /
    • pp.71-79
    • /
    • 2008
  • The rebar work is very related to the safety and durability of the building. Recently, the rebar work is produced some serious problems due to the lack of skillful crafts-man and the rising cost of rebar materials. Many papers have dealt with the rebar work of the manufacturing system in plants with a view to improvement those problems. But, the research on the rebar work of the manufacturing system in field is in a insignificant condition. This study presents the following improvement schemes as a result. First, the education strengthening for evaluation on practical affairs, second, the reinforcement of drawing & management in shop drawing and finally the simplification of apartment rebar work in slab. Also, this paper aims at advancing apartment rebar work by the actual condition survey in slab work. The further research will be needed about the whole structure parts such as foundation, wall, girder and rebar truss-deck plate as one of the improvement methods.

An Exploratory Study of Material Flow Cost Accounting: A Case of Coal-Fired Thermal Power Plants in Vietnam

  • NGUYEN, To Tam
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.5
    • /
    • pp.475-486
    • /
    • 2022
  • The purpose of this paper is to examine the use of material flow cost accounting (MFCA) in Vietnam's coal-fired thermal power plants. This study is based on the contingency and system theories to explain the application of management tools and analyze steps of input, output, and process in manufacturing. Costs in producing process-based MFCA include material cost, energy cost, system cost, and waste management cost. The exploratory case study methodology is used to describe and answer two questions, namely "How coal flow cost is recognized?" and "Why waste in material consumption can be harmful to the environment?". By analyzing the Quang Ninh and Pha Lai coal-fired thermal power plants that are the typical plants, this paper identifies the flow of primary material in these plants as a basis for determining losses for the business. The material flow of coal-fired thermal power plants provides the basis for the use of the MFCA. The manufacturing of electrical items in these plants is divided into four stages, each with its own set of losses. As a result, some phases in the application of MFCA are suggested, as well as some other elements required for MFCA application in coal-fired thermal power plants.

Development of a Robot Vision System for Automatic Repair and Maintenance of Steam Generator in Nuclear Power Plants (원전 스팀 제네레이터의 자동보수 유지를 위한 로보트비젼 시스템 개발)

  • 한성현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.4
    • /
    • pp.9-18
    • /
    • 1997
  • It is proposed a new approach to the development of the automatic vision system to examine and repair the steam generator tubes at remote distance. In nuclear power plants, workers are reluctant of works in steam generator because of the high radiation environment and limited working space. It is strongly recommended that the examination and maintenance works be done by an automatic system for the protection of the operator from to radiation exposure. Digital signal processors are used in implementing real time recognition and examination of steam generator tubes in the proposed vision system. Performance of proposed digital vision system is illustrated by simulation and experiment for similar steam generator model.

  • PDF

A Study on Thermal Stress of Power Piping due to Loop Design (루프디자인에 따른 배관시스템의 열응력에 관한 연구)

  • Lee, JungHyun;Park, JiSung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.450-455
    • /
    • 2014
  • Domestic power plants have consistently been developed over the years in industrially developed nations with high standards of living. Considering the power plant development strategy, design efficiency is of upmost importance. Therefore, an improper design directly affects the power plant's risk management plan and the potential risks of the piping system. Therefore, in this study, research is intended to be carried out to allow efficient power plant operation, through optimization of the design of the piping system. The purpose of the study is to confirm economic feasibility by changing the piping loop design, expanding the length of pipe loops, and to investigate the thermal stress influence on the piping system through simulations of systems similar in condition to those currently used in existing plants in Korea.

Task Rescheduling Using a Coordinator in a Structural Decentralized Control of Supervisory Control Systems

  • Lee, Sang-Heon;Kim, Ill-Soo;Kai C. Wong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.2
    • /
    • pp.22-31
    • /
    • 2004
  • A problem of task rescheduling using a coordinator in a structural decentralized control of supervisory control theory is formulated. we consider that the overall system is divided into a number of local systems. Using an example of a chemical batch reaction process, it has shown that after local supervisors have been established for a given task, a coordinator can be used to solve some rescheduling problems among local plants for new or modified tasks. The coordination system models the interactions of local plants, and is consisting of only the shared events of local plants, so simpler to synthesize. A coordinator is designed based on the specifications given for the coordination system. Under the 'structural' conditions developed in this paper, the combined concurrent actions of the coordinator with the existing local supervisors will achieve the rescheduling requirements. Again since the conditions are structural (not specification-dependent), once the coordination architecture has been established, it can be used for a number of different tasks without further verifications.

Development of 3D Modeling System to Display the Cutting Shape of H-Beam Used in Ships and Ocean Plants (선박 및 해양 플랜트용 H-빔 절단을 위한 3차원 형상 모델링 구현 시스템 개발)

  • Park, Ju-Yong;Jo, Hyo-Jae;Lee, Ji-Hoon;Park, Ji-Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.47-52
    • /
    • 2011
  • 3D geometric modeling has a lot of advantages in the field of design and manufacturing. Many manufacturing processes and production lines are using 3D geometric modeling technique. These help reduce the cost and time for manufacturing. The purpose of this study is the realization of a 3D cutting shape for an H-Beam used in ships and ocean plants. The complex 3D cutting shapes could be represented by using the boolean operation of basic figures. Graphic functions with parameters were used to simply define the basic figures. The developed system can show the complex cutting shape of an H-beam simply and quickly. This system can be utilized for the automatic cutting system for an H-beam.

Development of Programmable Logic Controller-Based Supervisory System for Group Production Machine (그룹 생산설비에 대한 PLC 기반 감시시스템 개발)

  • Cho, Yongsik;Ahn, Junghwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.1
    • /
    • pp.15-20
    • /
    • 2014
  • The manufacturing equipment on most shop floors consists of numerical control machines, and the condition of each piece of equipment is monitored and controlled by an internal sensor or programmable logic controller (PLC). To control and monitor production lines that consist of an equipment or production module, a separate control and monitoring system such as a manufacturing execution system should be introduced. However, there is no standardized system, and it is costly and difficult to build a system for small or medium-sized plants. In this paper, a PLC-based supervisory system for operation control of a group of production machines is proposed, and the developed PLC-based system is evaluated by applying it to a computer numerical control machine.

Design of Remote Management System for Smart Factory

  • Hwang, Heejoung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.109-121
    • /
    • 2020
  • As a decrease in labor became a serious issue in the manufacturing industry, smart factory technology, which combines IT and the manufacturing business, began to attract attention as a solution. In this study, we have designed and implemented a real-time remote management system for smart factories, which is connected to an IoT sensor and gateway, for plastic manufacturing plants. By implementing the REST API in which an IoT sensor and smart gateway can communicate, the system enabled the data measured from the IoT sensor and equipment status data to the real-time monitoring system through the gateway. Also, a web-based management dashboard enabled remote monitoring and control of the equipment and raw material processing status. A comparative analysis experiment was conducted on the suggested system for the difference in processing speed based on equipment and measurement data number change. The experiment confirmed that saving equipment measurement data using cache mechanisim offered faster processing speed. Through the result our works can provide the basic framework to factory which need implement remote management system.

A Study on Process Management Method of Offshore Plant Piping Material (해양플랜트 배관재 공정관리 방법에 관한 연구)

  • Park, JungGoo;Woo, JongHun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.2
    • /
    • pp.124-135
    • /
    • 2018
  • In order to secure manufacturing competitiveness of offshore plants, piping process is one of the most important processes. This study is about the design of management system for piping materials manufacturing of the offshore plant. As a result of the study, we analyzed the system and algorithms needed for the processing of piping material products and designed the structure of the entire management system. We conducted a process analysis of the design, manufacturing and installation processes. And also we proposed a system structure to improve the various problems that have come out. We also proposed an algorithm to determine the delivery order of the pipe spools, and proposed a raw material management system for the manufacturing of the pipe spools. And we designed a manufacturing process management system to manage the risk of pipe materials delivery. And finally we proposed a data structure for the installation process management system. The data structures and algorithms were actually implemented, and applied the actual process data to verify the effect of the system.