• Title/Summary/Keyword: Manufacturing facility

Search Result 351, Processing Time 0.025 seconds

Multiobjective Genetic Algorithm for Scheduling Problems in Manufacturing Systems

  • Gen, Mitsuo;Lin, Lin
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.4
    • /
    • pp.310-330
    • /
    • 2012
  • Scheduling is an important tool for a manufacturing system, where it can have a major impact on the productivity of a production process. In manufacturing systems, the purpose of scheduling is to minimize the production time and costs, by assigning a production facility when to make, with which staff, and on which equipment. Production scheduling aims to maximize the efficiency of the operation and reduce the costs. In order to find an optimal solution to manufacturing scheduling problems, it attempts to solve complex combinatorial optimization problems. Unfortunately, most of them fall into the class of NP-hard combinatorial problems. Genetic algorithm (GA) is one of the generic population-based metaheuristic optimization algorithms and the best one for finding a satisfactory solution in an acceptable time for the NP-hard scheduling problems. GA is the most popular type of evolutionary algorithm. In this survey paper, we address firstly multiobjective hybrid GA combined with adaptive fuzzy logic controller which gives fitness assignment mechanism and performance measures for solving multiple objective optimization problems, and four crucial issues in the manufacturing scheduling including a mathematical model, GA-based solution method and case study in flexible job-shop scheduling problem (fJSP), automatic guided vehicle (AGV) dispatching models in flexible manufacturing system (FMS) combined with priority-based GA, recent advanced planning and scheduling (APS) models and integrated systems for manufacturing.

The Roundness Prediction at Numerical Control Machine Using Neural Network (수치제어 공작기계에서 신경망을 이용한 진원도 예측)

  • Shin, Kwan-Soo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.3
    • /
    • pp.315-320
    • /
    • 2009
  • The purpose of this study is to predict the roundness of Numerical Control Machining so that helps the operator to choose the right machining conditions to produce a product within the given error limits. Learning of neural network is Backpropagation theory. From this study, the base was set to setup the database to produce precisely machined product by predicting the rate of error in the fabrication facility which does not have the environment to analyze it.

  • PDF

Performance of periodic production scheduling policy (주기적 생산 스케쥴링 전략의 성능)

  • Song, Seok-Cheon;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.343-348
    • /
    • 1988
  • This paper describes an application of the periodic scheduling policy to a class of flexible manufacturing systems. A heuristic algorithm is used to determine when each part should be loaded into the system. Simulation results based on a detailed model of metal-working manufacturing facility are presented.

  • PDF

Analysis semiconductor FAB line on computer modeling & simulation (컴퓨터 모델링과 시뮬레이션을 통한 반도체 FAB Line 분석)

  • 채상원;한영신;이칠기
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2002.11a
    • /
    • pp.115-121
    • /
    • 2002
  • The growth of semiconductor industry attracted to researchers like design, facility technique and making small size chip areas. But nowadays, cause of technology extension and oversupply and price down, yield improvement is the most important point on growth. This paper describes the computer mode]ing technique as the solutions to analyze the problem, to formalize the semiconductor manufacturing process and to build advanced manufacturing environments. The computer models are built referring an existing 8' wafer production line in Korea.

  • PDF

Autoencoder Based N-Segmentation Frequency Domain Anomaly Detection for Optimization of Facility Defect Identification (설비 결함 식별 최적화를 위한 오토인코더 기반 N 분할 주파수 영역 이상 탐지)

  • Kichang Park;Yongkwan Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.3
    • /
    • pp.130-139
    • /
    • 2024
  • Artificial intelligence models are being used to detect facility anomalies using physics data such as vibration, current, and temperature for predictive maintenance in the manufacturing industry. Since the types of facility anomalies, such as facility defects and failures, anomaly detection methods using autoencoder-based unsupervised learning models have been mainly applied. Normal or abnormal facility conditions can be effectively classified using the reconstruction error of the autoencoder, but there is a limit to identifying facility anomalies specifically. When facility anomalies such as unbalance, misalignment, and looseness occur, the facility vibration frequency shows a pattern different from the normal state in a specific frequency range. This paper presents an N-segmentation anomaly detection method that performs anomaly detection by dividing the entire vibration frequency range into N regions. Experiments on nine kinds of anomaly data with different frequencies and amplitudes using vibration data from a compressor showed better performance when N-segmentation was applied. The proposed method helps materialize them after detecting facility anomalies.

ASSESSMENT OF ACTIVITY-BASED PYROPROCESS COSTS FOR AN ENGINEERING-SCALE FACILITY IN KOREA

  • KIM, SUNGKI;KO, WONIL;BANG, SUNGSIG
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.849-858
    • /
    • 2015
  • This study set the pyroprocess facility at an engineering scale as a cost object, and presented the cost consumed during the unit processes of the pyroprocess. For the cost calculation, the activity based costing (ABC) method was used instead of the engineering cost estimation method, which calculates the cost based on the conceptual design of the pyroprocess facility. The calculation results demonstrate that the pyroprocess facility's unit process cost is $194/kgHM for pretreatment, $298/kgHM for electrochemical reduction, $226/kgHM for electrorefining, and $299/kgHM for electrowinning. An analysis demonstrated that the share of each unit process cost among the total pyroprocess cost is as follows: 19% for pretreatment, 29% for electrochemical reduction, 22% for electrorefining, and 30% for electrowinning. The total unit cost of the pyroprocess was calculated at $1,017/kgHM. In the end, electrochemical reduction and the electrowinning process took up most of the cost, and the individual costs for these two processes was found to be similar. This is because significant raw material cost is required for the electrochemical reduction process, which uses platinum as an anode electrode. In addition, significant raw material costs are required, such as for $Li_3PO_4$, which is used a lot during the salt purification process.

A Case Study on Layout Improvement in Medium and Small-Sized Manufacturing Factories (중소 제조 기업의 LAYOUT 개선 사례 연구)

  • Chung, Dae Kwon;Yun, Won Young
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.4
    • /
    • pp.368-380
    • /
    • 2015
  • This paper deals with a case study of layout design and improvement in medium and small-sized manufacturing factories. The shop layout affects greatly the productivity of manufacturing systems and we introduce some cases in which shop layouts are changed to improve the productivity step by step. Based on case studies, we propose also some guides to improve and design the shop layout in medium and small-sized manufacturing factories.

A IOCP-based Server for Product Information Management System of Small and Medium Size Manufacturing Companies (중소 제조업체의 생산정보 관리시스템을 위한 IOCP 기반 서버)

  • Rim, Seong-Rak;Song, Ki-Seok
    • Journal of Information Technology Applications and Management
    • /
    • v.14 no.4
    • /
    • pp.31-41
    • /
    • 2007
  • In order to keep global competitiveness, most of small and medium size manufacturing companies require to equip a product information management system which collects and analyzes the data generated at the manufacturing lines and then provides information for manager or worker to make a decision. However, these companies have a cost problem for adopting the enterprise resource planning system mostly used in large companies. To overcome this problem, we suggest an IOCP-based server for the product information management system suitable for small and medium size manufacturing companies. The basic concept of suggested server is that it is possible to process concurrently the connection requests coming from data collector and client by using the facility of asynchronous notification of OS and protect a server against overload by using the thread pool.

  • PDF

Reliability Design Based on System Performance-Cost Trade-off for Manufacturing facility

  • Hwang, Heung-Suk;Hwang, Gyu-Wan
    • International Journal of Reliability and Applications
    • /
    • v.2 no.4
    • /
    • pp.269-280
    • /
    • 2001
  • The objective of this paper is to provide a model for effective implementation of costing RAM management in the design and procurement of production facility considering the system cost-performance trade-off. This research proposes a two-step approach of costing RAM design and test of system RAM for production facility. In Step 1, a static model is proposed to find an initial system configuration to meet the required performance based on system RAM and LCC and analyzes the trade-off relationships between various factors of RAM and LCC. In the second Step, we developed time and failure truncated models for system reliability test and analysis. For the computational purpose, we developed computer programs and have shown the sample results. By the sample test run, the proposed model has shown the possibilities to provide a good method to analyze system performance evaluation for both design and operational phase, This model can be applied to a wide variety of systems not only for costing RAM of the production facilities but also for the other kinds of equipment.

  • PDF

Comparison of Laser Scabbling Efficiency According to Concrete Mixing Design Conditions (콘크리트 배합설계조건에 따른 레이저 스캐블링 효율성 비교)

  • Heo, Seong-Uk;Lee, Jae-Yong;Chung, Chul-Woo;Kim, Ji-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.156-157
    • /
    • 2021
  • Since concrete is contaminated or radioactive during operation of nuclear power plants, it is the most important radioactive waste generated during the dismantling of a nuclear power plant. The amount of waste is different depending on the pollution state of each facility and the applied technology is different, so there is a big difference. We aim to reduce the amount of waste and increase the value of recyclability through technology to remove radionuclides attached to the surface. For this purpose, laser scabbling, which exfoliates the surface of concrete by irradiating a laser, and a facility system for controlling dust and dust are used in parallel. The purpose of this study is to evaluate the efficiency of laser scabbling by manufacturing simulated concrete for nuclear facilities, and to review the optimal mixing design conditions for nuclear facility structures.

  • PDF