• Title/Summary/Keyword: Manufacturing cement clinker

Search Result 30, Processing Time 0.022 seconds

Manufacturing of Calcium Silicate Cement Using Construction Waste (건설폐기물을 활용한 이산화탄소 반응경화 시멘트 제조에 관한 연구)

  • Lee, Hyang-Sun;Son, Bae-Geun;Song, Hun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.47-48
    • /
    • 2023
  • In the domestic industrial sector, greenhouse gases emitted from the cement industry account for about 10%, with most of them generated during the cement clinker calcination process. During the calcination process, 57% of carbon dioxide is emitted from the decarbonation reaction of limestone, 30% from fuel consumption, and 13% from electricity usage. In response to these issues, the cement industry is making efforts to reduce carbon dioxide emissions by developing technologies for raw material substitution and conversion, improving process efficiency by utilizing low-carbon alternative heat sources, developing CO2 capture and utilization technologies, and recycling waste materials. In addition, due to the limitations in purchasing and storing industrial byproducts generated from industrial facilities, many studies are underway regarding the recycling of construction waste. Therefore, this study analyzes the manufacture of calcium silicate cement (CSC), which can store carbon dioxide as carbonate minerals in industrial facilities, and aims to contribute to the development of environmentally friendly regenerated cement using construction waste.

  • PDF

A Fundamental Study on Properties of Mortar using Non-Sintered Cement (비소성시멘트를 사용한 모르터의 물리적 특성에 관한 기초적 연구)

  • Kim Han-sic;Choi Maeng-Ki;Han Da-Hee;Park Hee-Gon;Paik Min-Su;Jung Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.101-104
    • /
    • 2005
  • The world's cement demand is anticipated to increase about 2.558$\%$ every year until the first half of the 21st century. To be closed the increase of cenment damand and simultaneously comply with the Kyoto Protocal, cement that gives less carbon dioxide(Co2) discharge should be urgently developed. If cement can be manufactured with industrial byproducts such as granulated blast furnace slag(GBFS), phosphogypsum(PG), and waste lime(WL) instead of clinker as its counterproposal, there would be many advantages including maximum use of these industrial byproducts for high value-added resources, conservation of natural resources and energy by omitting the use of clinker, minimized environmental pollution problems caused by Co2 discharge and reduction of the cost. So this study aims to solve the problems by manufacturing non-sintered cement.

  • PDF

Synthesis and Properties of Calcium Sulfoaluminate Clinker Using Waste Shell, Spent Oil-Refining Catalyst and Desulfurized Gypsum (폐패각-정유폐촉매-배연탈황석고를 사용한 Calcium Sulfoaluminate 클링커의 합성과 특성)

  • Lee, Keon-Ho;Song, Tae-Woong
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.7 s.278
    • /
    • pp.483-489
    • /
    • 2005
  • For the raw materials of 3CaO$\cdot$3Al$_{2}$O$_{3}$ $\cdot$CaSO$_{4}$(CSA) clinker manufacturing, the applications of industrial wastes such as waste shell, spent oil-refining catalyst and desulfurized gypsum were examined. The c1inkerbility of the raw mix and the behaviour of formation of clinker minerals were studied and then some hydraulic properties of cements containing the clinker were also investigated. By virtue of the high reactivity of thermally decomposed raw materials, CSA clinkers were obtained at relatively low temperature of 1250$^{\circ}C$ and thus oil-refining catalysts were more desirable than aluminium hydroxide as an aluminous raw material. The expansive cement samples showed somewhat lower flow value than that of OPC, but their compressive strengths were developed earlier and higher than that of OPC due to formation of ettringite in the early hydration time, which indicated the possibility of practical use of low-cost CSA clinker using industrial wastes only.

Study on Burnability and Reactivity of High Al2O3 Content OPC Clinker for the Use of Industrial Waste (산업부산물 활용을 위한 고Al2O3 함량 OPC 클링커의 소성성 및 반응성에 관한 연구)

  • Kang, Bong-Hee;Choi, Jaewon;Ki, Tae-Kyoung;Kwon, Sang-Jin;Kim, Gyu-Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.294-301
    • /
    • 2020
  • This study evaluated the burnability and hydration reaction of clinker burned with high Al2O3 content OPC to apply large amounts of industrial by-products in the cement manufacturing process. Specifically, after preparing a clinker with a high C3A content by burning the OPC raw material with a high content of Al2O3 in a laboratory electric furnace, the burnability of the clinker was evaluated through XRD Rietveld analysis and polarization microscopy, and clinker hydration reactivity was reviewed through the Isothermal conduction calorimetry analysis and the cement compressive strength. As a result, the kiln burning temperature for the production of high Al2O3 content clinker lower, and the compressive strength was equal to or higher than OPC. Therefore it was confirmed the possibility to manufacturing energy-saving high Al2O3 content clinker using a large amount of industrial by-products.

CaO Optimal Classification Conditions for the Use of Waste Concrete Fine Powder as a Substitute for Limestone in Clinker Raw Materials (폐콘크리트 미분말을 클링커 원료의 석회석 대체재로 사용하기 위한 CaO 최적 분급 조건)

  • Ha-Seog Kim;Sang-Chul Shin
    • Land and Housing Review
    • /
    • v.15 no.1
    • /
    • pp.147-156
    • /
    • 2024
  • This study aims to reduce CO2 generated during the manufacturing process by using limestone (CaCO3), a carbonate mineral used in the production of cement clinker, as a decarbonated raw material that does not contain CO2. Among various industrial by-products, we attempted to use cement paste attached to waste concrete. In general, limestone for cement must have a CaCO3 content of at least 80% (CaO, 44% or more) to ensure the quality of cement clinker. However, the CaO content of waste concrete fine powder is about 20% on average, so in order to use it as a cement clinker raw material, the CaO content must be increased to more than 35%. Therefore, by using the difference in hardness of the mineral composition of waste concrete fine powder to selectively crush CaO type minerals with relatively low hardness, classify and sieve, the CaO content can be increased by more than 35%. Accordingly, in this study, we experimentally and statistically reviewed and analyzed the optimal conditions for efficiently separating CaO and SiO2 and other components by selectively pulverizing minerals containing relatively low CaO through a grinding process. As a result of the optimal grinding conditions experiment, it was found that the optimal conditions were a grinding time of less than 5 minutes, a type of material to be crushed of 30 mm, and an amount of material to be crushed of 1.0 or more. However, it is judged that it is necessary to review pulverized materials of mixed particle sizes rather than pulverized products of single particle size.

Study on the Correlation between Quality of Cement and Amount of Alternative Fuels used in Clinker Sintering Process (시멘트 클링커 소성공정 대체연료 사용량과 시멘트 품질간 상관관계 연구)

  • Choi, Jaewon;Koo, Kyung-Mo;You, Byeong-Know;Cha, Wan-Ho;Kang, Bong-Hee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.1
    • /
    • pp.75-84
    • /
    • 2021
  • In this study, the correlation between cement quality(chemical composition, mineral composition, and compressive strength) and amount of waste alternative fuels used in the cement manufacturing process and was investigated. Cement manufacturing facility using coal, soft plastics(plastics that are easily scattered by wind power, such as vinyls), hard plastics(plastics that do not contain foreign substances, waste rubber, PP, etc.) and reclaimed oil was analised. Data was collected for 3 years from 2017 to 2019 and let the amount of fuels used as an independent variable and cement quality data as a dependent variable. As a result, depending on the type and quality of the alternative fuel has not a significant effect on the chemical composition(Cl and LSF) and mineral composition(f-CaO, C3S contents). Contrary to the concern that the compressive strength of cement would decrease, there was a significant positive correlation between amount of alternative fuel used and cement compressive strength.

A Study on the Characteristics of Chlorine-Containg Cement Depending on Changes in Gypsum and Iron Modulus (이수석고 함량과 Iron Modulus 변화에 따른 염소 함유 시멘트의 특성에 관한 연구)

  • Lee, Young-Jun;Kim, Nam-Il;Cho, Jeong-Hoon;Seo, Sung-Kwan;Chu, Yong-Sik
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.53-60
    • /
    • 2022
  • The physical properties of chlorine-containing cement were analyzed to optimize the operational conditions when waste resources containing chlorine were used in the cement manufacturing process. Cement with clinker to gypsum weight ratios of 95:5 and 93:7 were manufactured. In addition, the iron modulus (IM) of clinker was set to 1.3, 1.5, and 1.7 to evaluate the burnability and physical properties of clinker. With constant chlorine content, increasing gypsum content resulted in a decrease in the 3 day-compressive strength, whereas the 28 day-compressive strength increased. In addition, flow and setting time also increased with increasing gypsum content. As the IM decreased, burnability was improved, free-CaO content decreased, alite and ferrite content increased, and compressive strength increased In particular, the compressive strength of IM 1.3 was approximately 14% greater than that of IM 1.7.

study of the character and condition of Cr in the korea cement (국내 시멘트 중의 크로뮴 성상에 관한 연구)

  • Min, Kyung-San;Lee, Seung-Heun;Lee, Se-Jin;Lee, Seung-Hoon;Moon, Se-Heum;Jeong, Jae-Hong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.521-524
    • /
    • 2008
  • The purpose of this study is to identify the character and condition of Cr in the clinker and thereby contribute to the research for reduction in utilizing Cr in the cement manufacturing process. The concentration of chromium by cement particle size and the distribution of chromium by clinker mineral were measured. Next, correlation was considered between chromium and the soluble components in cement. As a result, in the range that cement particles were 20${\mu}$m or less, highest soluble hexavalent chromium was found. When the concentration of chromium was measured through mineral separation, belite and the interstitial phase were higher in chromium than in alite. soluble hexavalent chromium was contained in domestic cement less than 20ppm, and its conversion ratio was somewhat high as 10 to 40% or so.

  • PDF

The study on the burnability of domestic fly ash and Japanese fly ash as a cement raw material (시멘트 원료로서 국내산 석탄재와 일본산 석탄재의 소성성 비교 연구)

  • Yoon-Cheol Lee;Se-Yong Lee;Kyung-So Min;Seok-Je Lee;Tae-Gyun Park;Dong-Woo Yoo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.210-215
    • /
    • 2023
  • Raw mix burnability is an especially crucial factor in cement manufacturing technology, and it depends on the physical, chemical and mineralogical properties of each raw material. In this article, we compared the difference of burnability between the domestic and Japanese fly ash as cement raw materials by using Lafarge and Polysius evaluation method. Regardless of the type or amount of fly ash used, it was found to be more combustible when using fly ash. In both case, burnability improves as the amount of fly ash increases, especially the improvement in bunarbility is remarkable up to 3%. In conclusion, as the amount of fly ash increases within the range allowed by cement quality, burnability of raw materials improves, and thus the fuel cost required for the firing of clinker can also be expected to be reduced.