• Title/Summary/Keyword: Manufacturing Resources

Search Result 969, Processing Time 0.022 seconds

Optimization of the Spreadable Modified Butter Manufacturing by Response Surface Methodology

  • Suh, Mun Hui;Lee, Keon Bong;Baick, Seung Chun
    • Food Science of Animal Resources
    • /
    • v.32 no.6
    • /
    • pp.783-788
    • /
    • 2012
  • The aim of this study was to optimize the manufacturing condition of spreadable modified butter by RSM. Based on the central composite design, the degree of optimization was expressed as a SFC as a dependent variable (Y, %) determined by NMR with 23 experimental groups. Three independent variables were the contents of butter ($X_1$, 35-75%), the contents of grape seed oil ($X_2$, 15-35%), and the contents of hydrogenated soybean oil ($X_3$, 0-4%). As the result, SFC at $10^{\circ}C$ was ranged from 32.37 to 42.76%. In addition, the regression coefficients were calculated for SFC at $10^{\circ}C$ by RSREG. The regression model equation for the SFC was $Y=39.18-0.04X_1X_3$. Consequently, the optimal contents for manufacturing spreadable modified butter were determined as 55.18% for butter, 40.78% for grape seed oil, and 4.08% for hydrogenated soybean oil, respectively. The predicted response value for SFC at $10^{\circ}C$ was 30.20%, comparable to the actual experimental SFC value as 29.85%. Finally hardness and spreadability in reference butter and spreadable modified butter produced under the optimal conditions was measured. The hardness in spreadable modified butter was 31.80 N as compared to 69.92 N in reference butter. The spreadability in spreadable modified butter was 5.6 point as compared to reference butter. This difference may be due to the contents of solid fat by butter and hydrogenated soybean oil. This study showed that the SFC value at $10^{\circ}C$ could be a suitable indicator for the manufacturing spreadable modified butter to predict important attributes such as mouth feel, hardness and spreadability.

A Search for the Factor on Productivity Fluctuation in Korean Manufacturing Industries (우리나라 제조업의 생산성 변동원인 규명)

  • 강규철
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.51
    • /
    • pp.175-187
    • /
    • 1999
  • The notion of productivity has been extended from the quantitative change of input factors to the efficiency change meaning efficient use of resources, and to the technical change meaning the qualitative improvement of input resources. In this way, the technical change is termed as total factor productivity in the individual businesses or the manufacturing industries. They should efficiently respond to the variations of economic environment and at the same time, have to make the efforts to improve productivity by increasing managerial efficiency and rasing the level of technology change for the continuous growth. Considering the growing importance of productivity, this study closely examines the factors influctuation on the productivity, fluctuation using total factor productivity in korean manufacturing industries. For the objective this study investigates the methods of measurement about total factor productivity, establishes the hypotheses based on the preceding research and finding. The results are obtained through the examination on the outcoms of regression analysis and related data. The results can be summarized as follows, First, in the progress of korean industrialization, the qualitative growth does not depend on the total factor productivity of the technical advance, and does not lead to the industry expansion. That is, the contribution of total factor productivity turns out to be relatively low. Second, it is necessary for the manufacturing industry to improve the level of technology and to emphasize the innovation of business, since the capital investment does not completely become fixed in the growth rate of productivity. Finally, continuous R&D investment should be made to increase total factor productivity. Namely, the regulation of industrial structure with an intensive technical development is essential and should be based on scientific and technical knowledge.

  • PDF

Manufacture and Physicochemical Properties of Chitosan Oligosaccharide/A2 β-Casein Nano-Delivery System Entrapped with Resveratrol

  • Kim, Mi Young;Ha, Ho-Kyung;Ayu, Istifiani Lola;Han, Kyoung-Sik;Lee, Won-Jae;Lee, Mee-Ryung
    • Food Science of Animal Resources
    • /
    • v.39 no.5
    • /
    • pp.831-843
    • /
    • 2019
  • The purposes of this research were to form chitosan oligosaccharide (CSO)/A2 ${\beta}$-casein nano-delivery systems (NDSs) and to investigate the effects of production variables, such as CSO concentration levels (0.1%, 0.2%, and 0.3%, w/v) and manufacturing temperature ($5^{\circ}C$, $20^{\circ}C$, and $35^{\circ}C$), on the production and physicochemical characteristics of CSO/A2 ${\beta}$-casein NDSs to carry resveratrol. The morphological characteristics of CSO/A2 ${\beta}$-casein NDSs were assessed by the use of transmission electron microscopy (TEM) and particle size analyzer. High-performance liquid chromatography (HPLC) was applied to determine the entrapment efficiency (EE) of resveratrol. In the TEM images, globular-shaped particles with a diameter from 126 to 266 nm were examined implying that NDSs was successfully formed. As CSO concentration level was increased, the size and zeta-potential values of NDSs were significantly (p<0.05) increased. An increase in manufacturing temperature from $5^{\circ}C$ to $35^{\circ}C$ resulted in a significant (p<0.05) increase in the size and polydispersity index of NDSs. Over 85% of resveratrol was favorably entrapped in CSO/A2 ${\beta}$-casein NDSs. The entrapment efficiency (EE) of resveratrol was significantly (p<0.05) enhanced with an increase in manufacturing temperature while CSO concentration level did not significantly affect EE of resveratrol. There were no significant (p<0.05) changes observed in the size and polydispersity index of NDSs during heat treatments and storage in model milk and yogurt indicating that CSO/A2 ${\beta}$-casein NDSs exhibited excellent physical stability. In conclusion, the CSO concentration level and manufacturing temperature were the crucial determinants affecting the physicochemical characteristics of CSO/A2 ${\beta}$-casein NDSs containing resveratrol.

A Study on Revision of Regulations to Promote Recycling of Animal and Plant Residues (동·식물성잔재물의 재활용 촉진을 위한 관련 법규 개정 연구)

  • Oh, Gil-Jong;Park, Seon-Oh;Kim, Ki-Heon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.2
    • /
    • pp.77-90
    • /
    • 2017
  • In order to promote recycling of animal and plant residues, it is necessary to prepare detailed statistics on the sources, generation amount and the state of disposal so that waste recycling companies and enterprises can obtain the information easily. Also, the recycling methods specified in the law should be appropriate. For this, the study reviewed the appropriateness of detailed classification of animal and plant residues and permitted recycling methods in the Enforcement Regulations of the Waste Management Act of Korea. For improvement of the detailed classification, the study conducted literature review on European and Japanese ones. Additionally, we visited slaughterhouses of livestock and poultry, vegetable oils manufacturing companies, starches and glucose or maltose manufacturing companies, which generate the waste and recycle the waste, to grasp the status of recycling in Korea. Based on the results, the study proposes improvement measures for the detailed classification and the permitted recycling types in the law.

Recovery of Waste Back Board and Gold from the Process of Printed Circuit Board (인쇄회로기판(印刷回路基板) 제조공정(製造工程)의 폐(廢) Back Board 및 금(金) 회수(回收))

  • Kim, Yu-Sang
    • Resources Recycling
    • /
    • v.19 no.1
    • /
    • pp.57-65
    • /
    • 2010
  • Recently, we have investigated the recovery of resources from the waste material of manufacturing printed circuit board. As printed circuit board or chip has become light, small, high reliability, it is necessary to reuse and recover resources from them. Especially, the printed circuit board that has been used for important mobile electronic pans are plated with min.0.03 ${\mu}m$ to max.50 ${\mu}m$. As increasing the cost of gold, raw material, chemicals, payments and waste material, it has been accelerated the competition for reuse and recovery. But, it is insufficiency of technician and equipments for the recovery of effective resource. In this paper, as analyzing the technical trend of gold recovery and waste back board from the manufacturing process of printed circuit board, it may be effective of recycling, further more it may be contributed to develop the valuable resources.

Optimization of the Manufacturing Process for Mandarin Dry Chip Using Response Surface Methodology (RSM) (반응표면분석법을 이용한 감귤건조칩 제조조건 최적화)

  • Ra, Ha-Na;Park, Ga-Yeong;Kim, Ha-Yun;Cho, Yong-Sik;Kim, Kyung-Mi
    • Journal of the Korean Society of Food Culture
    • /
    • v.34 no.5
    • /
    • pp.637-644
    • /
    • 2019
  • The purpose of this study was to optimize the mandarin dry chip manufacturing using a response surface methodology. The experiment was designed based on a CCD (Central Composite Design), and the independent variables were the drying temperature ($X_1$, $50-90^{\circ}C$), drying time ($X_2$, 12-36 hours), and microwave pretreat time ($X_3$, 0-4 minutes). The results of appearance ($Y_5$), color ($Y_6$), taste ($Y_8$) and overall acceptance ($Y_{10}$) were fitted to the response surface methodology model ($R^2=0.86$, 0.88, 0.89, and 0.84, respectively). Increasing the drying temperature and microwave treatment time were negatively evaluated for consumer acceptance. On the other hand, a high value of consumer acceptance was evaluated when the drying time was more than 24 hr. Therefore, the optimal conditions of $X_1$, $X_2$, and $X_3$ were $52.989^{\circ}C$, 24 hr, and 1 min, respectively. Under these optimal conditions, the predicted values of $Y_5$, $Y_6$, $Y_8$, and $Y_{10}$ were 5.066, 5.338, 5.063, and 5.339, respectively.

Development of Manufacturing System Package for CFRP Machining (패키지형 탄소섬유복합재 가공시스템 개발)

  • Kim, Hyo-Young;Kim, Tae-Gon;Lee, Seok-Woo;Yoon, Han-Sol;Kyung, Dae-Su;Choi, In-Hue;Choi, Hyun;Ko, Jong-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.6
    • /
    • pp.431-438
    • /
    • 2016
  • Recently, concerns about the environment are becoming more important because of global warming and the exhaustion of earth's resources. In the aviation and automobile industries, the application of light materials is increasingly important for eco-friendly and effective. Carbon Fiber Reinforced Plastics is a composite material which great formability and the high strength of carbon fiber. CFRP, which is both light and strong, is hard to manufacture. In addition, CFRP machining has a high chance of defects. This research discusses the development of a manufacturing system package for CFRP machining. It involving CFRP Drilling/Water-jet Manufacturing Machines, Inspection/Post-processing Systems, CNC platform for an EtherCAT servo Communication, Flexible Manufacturing Systems and CFRP machining Processes.

Construction of a Verified Virtual NC Simulator for the Cutting Machines at Shipyard Using the Digital Manufacturing Technology (디지털 매뉴팩쳐링 기법을 이용한 절단기기의 검증된 가상 NC 시뮬레이터 구축)

  • Jung, Ho-Rim;Yim, Hyun-June;Lee, Jang-Hyun;Choi, Yang-Ryul;Kim, Ho-Gu;Shin, Jong-Gye
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.1 s.139
    • /
    • pp.64-72
    • /
    • 2005
  • Digital manufacturing is a technology to simulate the real manufacturing process using the virtual model representing the physical schema and the behavior of the real manufacturing system including resources, processes and product information. Therefore, it can optimize the manufacturing system or prevent the bottleneck processes through the simulation before the manufacturing plan is executed. This study presents a method to apply the digital manufacturing technology for the steel cutting process in shipyard. The system modeling of cutting shop is carried out using the IDEF and UML which is a visual modeling language to document the artifacts of a complex system. Also, virtual NC simulators of the cutting machines are constructed to emulate the real operation of cutting machines and NC codes. The simulators are able to verify the cutting shape and estimate the precise cycle time of the planned NC codes. The validity of the virtual model is checked by comparing the real cutting time and shape with the simulated results. It is expected that the virtual NC simulators can be used for accurate estimation of the cutting time and shape in advance of real cutting work.

Petri nets modeling and dynamic scheduling for the back-end line in semiconductor manufacturing (반도체 후공정 라인의 페트리 네트 모델링과 동적 스케쥴링)

  • Jang, Seok-Ho;Hwang, U-Guk;Park, Seung-Gyu;Go, Taek-Beom;Gu, Yeong-Mo;U, Gwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.6
    • /
    • pp.724-733
    • /
    • 1999
  • An effective method of system modeling and dynamic scheduling for the back-end line of semiconductor manufacturing is proposed. The virtual factory, describing semiconductor manufacturing line, is designed in detail, and then a Petri net model simulator is developed for operation and control of the modular cells of the virtual factory. The petri net model is a colored timed Petri nets (CTPNs). The simulator will be utilized to analyze and evaluate various dynamic status and operatons of manufacturing environments. The dynamic schedulaer has a hierarchical structure with the higher for planning level and the lower for dynamic scheduling level. The genetic algorithm is applied to extract optimal conditions of the scheduling algorithm. The proposed dynamic scheduling is able to realize the semiconductor manufacturing environments for the diversity of products, the variety of orders by many customers, the flexibility of order change by changing market conditions, the complexity of manufacturing processes, and the uncertainty of manufacturing resources. The proposed method of dynamic scheduling is more effective and useful in dealing with such recent pressing requirements including on-time delivery, quick response, and flexibility.

  • PDF

A Systematic Literature Review of Manufacturing Companies' Innovation Strategies in Korea (한국의 제조기업 혁신전략에 대한 체계적 문헌 연구)

  • Seungyeon Moon
    • Journal of Technology Innovation
    • /
    • v.31 no.2
    • /
    • pp.135-172
    • /
    • 2023
  • When discussing a company's technology management, manufacturing companies' innovation strategy is vital because it is connected to each company's competitive advantage in various ways, such as technology acquisition, R&D, and product innovation. The research on manufacturing companies' innovation strategies has been studied in various ways, such as performance and resources for innovation; however, very little research has been done to synthesize existing research outcomes. In this study, we conduct a systematic literature review of 51 articles related to manufacturing companies' innovation strategies. By doing so, we synthesized the results of extant studies based on three perspectives: the research target, the research focus, and the types of innovation strategies. In addition, I derived the unique properties of the research on manufacturing companies' innovation strategies. The analysis indicated that Korea's research on manufacturing companies' innovation strategies had been unequally distributed. Based on this, we suggested research agendas for future research on manufacturing companies' innovation strategies.