• 제목/요약/키워드: Manufacturing Process Variables

검색결과 447건 처리시간 0.027초

The Impact of Eco-friendly Management on Product Quality, Financial Performance and Environmental Performance

  • Ma, Jin-Hee;Choi, Seok-Beom;Ahn, Young-Hyo
    • 유통과학연구
    • /
    • 제15권5호
    • /
    • pp.17-28
    • /
    • 2017
  • Purpose - Considering the environmental issues in corporate management is now a necessity, not an option. In addition, consumers' interest in health and environment has increased rapidly. This study aims to investigate how the management style that pursues environmental protection affects the various outcomes at each management process such as planning, producing and supervising process. Research design, data, and methodology - We surveyed 319 manufacturing companies from April 1 to April 30, 2016. Green purchasing, environmental technology management and management support are selected as independent variables and firm performances as dependent variables. Three analyses including factor, regression and moderating were conducted. Results - Regression analysis was performed to set up hypotheses. Consequently, the total six hypotheses were adopted and then innovative management style showed moderating effect. Conclusions - Companies should consider environmental factors to improve the financial performance in the long term. Especially the cooperative style enhances financial performance by implementing eco-friendly design in cooperation with customers. Also, eco-friendly activities with suppliers could have direct environmental protection effects. Therefore, a manufacturer needs to cooperate with both suppliers and customers to maximize the protection effect. The production of eco-friendly products and implementing eco-friendly design with customers positively affect product quality.

알루미늄 합금재의 마찰교반용접 유한요소해석에 관한 연구 (A Study on the Finite Element Analysis in Friction Stir Welding of Al Alloy)

  • 이대열;박경도;강대민
    • 한국기계가공학회지
    • /
    • 제14권5호
    • /
    • pp.81-87
    • /
    • 2015
  • In this paper, the finite element method was used for the flow and strength analysis of aluminum alloy under friction stir welding. The simulations were carried out using Sysweld s/w, and the modeling of the sheet was executed using Unigraphics NX6 s/w. The welding variables for the analysis were the shoulder diameter, rotating speed, and welding speed of the tool. Additionally, a three-way factorial design method was applied to confirm the effect of the welding variables on the flow and strength analysis with variance analysis. From these results, the rotating speed had the greatest influence on the maximum temperature, and the maximum temperature was $578.84{\pm}12.72$ at a confidence interval of 99%. The greater the rotating speed and shoulder diameter, the greater the difference between maximum and minimum temperature. Furthermore, the shoulder diameter had the largest influence on von Mises stress, and the von Mises stress was $184.54{\pm}12.62$ at a confidence interval of 99%. In addition to the increased shoulder diameter, welding speed, and rotating speed of the tool increased the von Mises stress.

충격 지점과 보행자 전도 거리의 상관관계에 관한 연구 (A Study on the Relationship between Impact Point of Vehicle and Throw Distance of Pedestrian)

  • 강대민;안승모
    • 한국기계가공학회지
    • /
    • 제6권3호
    • /
    • pp.71-76
    • /
    • 2007
  • The fatalities of pedestrian account for about 40.0% of all fatalities in Korea 2005. Vehicle-Pedestrian accident generates trajectory of pedestrian. In pedestrian involved accident, the most important data to inspect accident is throw distance of pedestrian. The throw distance of pedestrian can be influenced by many variables. The variables that influence trajectory of pedestrian can be classified into vehicular factors, pedestrian factors, and road factors. Vehicular factors are the frontal shape of vehicle, impact speed of vehicle, the offset of impact point. Many studies have been done about the relation between impact speed and throw distance of pedestrian. But the influence of the offset of impact point was neglected. The influence of the offset of impact point was analyzed by Working Model, and the trajectory of pedestrian, dynamic characteristics of multi-body were analyzed by PC-CRASH, a kinetic analysis program for a traffic accident. Based on the results, the increase of offset reduced the throw distance of pedestrian. However box type vehicle just like bus, the offset of impact point did not influence the throw distance of pedestrian considerably.

  • PDF

충전해석에 의한 Plug Cover Housing 금형의 피드시스템 설계 (Designing Mold Feed Systems for Plug Cover Housing with Filling Analysis)

  • 박종천;유만준
    • 한국기계가공학회지
    • /
    • 제17권5호
    • /
    • pp.123-130
    • /
    • 2018
  • In this study, the optimum design of mold feed systems is determined for plug cover housing (PCH), which is a cover-assembly product that protects the wiring of automobile connectors. The design goal is to achieve the filling balance of the resin in the left and right covers while avoiding the occurrence of weld lines in the hinge as much as possible. For the optimization, an orthogonal array experiment and a main effect analysis of the design factors are performed, and the factors that cause the interactions with the two design characteristics are selected as the design variables. We present some design alternatives, i.e., some combinations of the design variables, and analyze the filling-simulation results, expected molding risk, and cost economics to select an optimum design solution among the design alternatives. In the optimal solution, the weld line is generated at a position outside the hinge, and the filling balance is also acceptable, showing that both design goals can be satisfied simultaneously despite conflicting with each other.

2D 유한요소해석을 이용한 트랜스미션 오일 씰 설계에 관한 연구 (A Study on the Design of Transmission Oil-Seal Using 2D Finite Element Analysis)

  • 윤현철;전기현;최주용
    • 한국기계가공학회지
    • /
    • 제18권1호
    • /
    • pp.85-93
    • /
    • 2019
  • Oil seals are most essential parts in mechanical lubrication system to maintain the close gaps between stationary and high rotating components, and to help prevent oil leakages. Oil seals also can prevent harmful contaminants entering from outside to machinery, especially in severe environments. Therefore, the oil seals have an important performance in the machinery components. The performance of the oil seals are influenced by the design variables such as amount of interference gap between the main lip and shaft, the angle of main lip at air and oil sides and the distance between the garter spring and main lip. In the present study, a finite element analysis was performed to evaluate the oil seal performance with the considerations of number of oil seal dust lips and angle of the lip at oil side with the different design variables. As a result from the FEM analysis, the stress and contact pressure distributions was derived, based on this, performance of the sealing and durability were determined.

자동채염기의 확률론적 구조설계 구현을 위한 신뢰성 해석 응용과 비교연구 (A Reliability Analysis Application and Comparative Study on Probabilistic Structure Design for an Automatic Salt Collector)

  • 송창용
    • 한국기계가공학회지
    • /
    • 제19권12호
    • /
    • pp.70-79
    • /
    • 2020
  • This paper describes a comparative study of characteristics of probabilistic design using various reliability analysis methods in the structure design of an automatic salt collector. The thickness sizing variables of the main structural member were considered to be random variables, including the uncertainty of corrosion, which would be an inevitable hazard in the work environment of the automatic salt collector. Probabilistic performance functions were selected from the strength performances of the automatic salt collector structure. First-order reliability method, second-order reliability method, mean value reliability method, and adaptive importance sampling method were applied during the reliability analyses. The probabilistic design performances such as reliability probability and numerical costs based on the reliability analysis methods were compared to the Monte Carlo simulation results. The adaptive importance sampling method showed the most rational results for the probabilistic structure design of the automatic salt collector.

차량의 둔턱 진행 모델 강제진동해석과 응답특성 (Forced Vibration Analysis and Response Characteristics of a Vehicle Dull Progress Model)

  • 이혁;윤문철;김종도
    • 한국기계가공학회지
    • /
    • 제19권11호
    • /
    • pp.49-57
    • /
    • 2020
  • The forced vibration characteristics for two impulse forces with time lag was discussed in the vehicle dull progress model. Detailed numerical analyses of the time domain were performed systematically. By the two exciting impulse forces, the responses of displacement, the velocity, and the acceleration were investigated in detail for the vehicle's vibration. Notably, the forced vibration responses in the time domain can be used to identify and monitor several vehicle vibration models. In order to define the responses of displacement, the velocity, and the acceleration, we applied a numerical technique (i.e., the Runge-Kutta-Gill method[1,2]). These variables were subsequently used to analyze the vehicle's vibration according to the time lapse and while it passed over a bump stock; moreover, the characteristics of the variables were analyzed in detail according to their force conditions. Finally, the intrinsic characteristics of the forced vibration were discussed in the context of the automobile model. Overall, our results indicate that the tested method can be successfully applied under different damped conditions.

정밀회전체의 언밸런스 변화에 따른 진동과 Al6061 알루미늄 합금 가공에 미치는 영향 (Effect of Unbalance on Vibration and Machining of Al6061 Aluminum Alloy in Precision Rotator)

  • 김민수;김정태;박석우;정동욱;최선호;구본흔;윤상환
    • 한국기계가공학회지
    • /
    • 제20권3호
    • /
    • pp.76-82
    • /
    • 2021
  • At present, with the development of precision instruments, high dimensional accuracy of workpieces must be ensured. In particular, for the aluminum alloys used in automobiles, the surface roughness of the workpiece is extremely important. The dimensional accuracy and surface roughness of the workpiece is considerably affected by the rotational accuracy of the rotor. Therefore, to enhance the rotational accuracy, various variables such as those related to the components such as bearings, motors, and end mills, rotational speeds, and vibrations must be considered. In this study, the difference in the quality of the workpieces was compared considering the weight imbalance and rotational speed as variables.

3D 프린팅 방식의 적층방향에 따른 시제품의 기계적 특성 비교에 관한 연구 (A Study on the Comparison Mechanical Properties of 3D Printing Prototypes with Laminating Direction)

  • 박찬;김명훈;홍성무;고정상;신보성
    • 한국생산제조학회지
    • /
    • 제24권3호
    • /
    • pp.334-341
    • /
    • 2015
  • This paper summarizes the results of an investigation into the environmental factors that have an indirect impact on parts quality, as well as those process variables and modeling information that have a direct impact. The effects of strength, surface hardness, roughness, and accuracy of shape, that is, qualities that users generally need to know, were evaluated with laminating direction experimentally. The 3D printing methods used in this experiment were fused deposition modeling (FDM), stereolithography apparatus (SLA), selective laser sintering (SLS), 3D printing (3DP) and laminated object manufacturing (LOM). The goal was to achieve a high standard of quality control and product quality by optimizing the fabrication process.

분말식초제조를 위한 분무건조공정의 최적화 (Optimization of Spray Drying Process for Manufacturing Dried Vinegar using Response surface methodology)

  • 황성희;정용진;윤광섭
    • 한국식품저장유통학회지
    • /
    • 제9권2호
    • /
    • pp.194-199
    • /
    • 2002
  • 천연식초를 이용하여 분말식초의 제조방법을 개발하고 아울러 분말식초의 품질특성 및 제조공정을 평가하여 분말식초의 제조 가능성을 검토하고자 하였다. 식초와 포접물질을 혼합한 포접물의 최적 농도는 피복물질의 양이 많을수록 흡습이 잘 되지 않고 열에도 안정함을 보였으나 포접물질의 양이 증가할수록 포접물질의 맛이 강하게 나타나 식초의 고유한 관능적인 특성이 떨어지므로 포접물의 농도를 30。bx 로 결정하였다. 분무건조공정을 최적화하기 위해 인입온도와 flow rate를 독립변수로 하고 분말식초의 품질특성을 나타내는 수분, 산도, 흡습성, 당함량, 열안정성 등을 종속변수로 하여 반응표면분석법을 실시한 결과, 분무공정의 최적조건은 inlet temperature는 19$0^{\circ}C$, flow rate는 550 L/h로 결정할 수 있었다.