• Title/Summary/Keyword: Manufacturing Process Control

Search Result 1,619, Processing Time 0.042 seconds

사판식 축 피스톤 펌프 밸브블록의 구조 해석에 관한 연구 (Structural Analysis of the Valve Block of a Swash Plate-Type Axial Piston Pump)

  • 김정화
    • 한국기계가공학회지
    • /
    • 제15권3호
    • /
    • pp.52-57
    • /
    • 2016
  • A swash plate-type piston pump is a device used to discharge hydraulic fluid as the volume generated through the piston moves in the direction of the slope by adjusting the angle of its swash plate. In addition, the valve block internalized in the pump includes a flow path for intake from outside, a flow path for discharge, and a pilot conduit line to control discharge pressure and flux. In this study, a numerical analysis is conducted to improve the cracking of the valve block generated during process testing, and the developed pump is evaluated.

연성인쇄회로기판의 액중 레이저 절단 (Laser Cutting of Flexible Printed Circuit Board in Liquid)

  • 김택구;김주한
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.56-62
    • /
    • 2013
  • The laser cutting process which is flexible and rapid usually provides a better result in cutting of flexible printed circuit boards (FPCB). However, circuit-short by the re-deposition of debris from laser ablation or its heat affect zone (HAZ) on the cutting surfaces can be a problem. A laser cutting process of FPCB in the presence of liquid can minimize these negative effects. The temperature distribution of copper and polymer parts of FPCB was analyzed with numerical simulation and the experimental results were presented to evaluate this process. Generally, laser cutting under liquid has advantages of less re-deposition of carbides and less HAZ on the cutting edges. However, bubble generation and laser beam control through the liquid media should be considered carefully to obtain a successful result.

확대인자를 이용한 허용차 분석법의 타당성 평가 (On Tolerance Analysis Using Inflation Factors)

  • 서순근;조유희
    • 품질경영학회지
    • /
    • 제33권3호
    • /
    • pp.91-104
    • /
    • 2005
  • Tolerance analysis plays an important role in design and manufacturing stages for reducing manufacturing cost by improving producibility. In most production processes encountered in practice, a process mean may shift or drift in the long run although process is in control. This study discusses the feasibility of three most common inflation factors(Bender, Gilson and Six Sigma) as a correction to Root Sum of Squares(RSS) method to compensate heuristically for a shift of process mean and nonnormal component distributions from simulation experiments and proposes the guidelines for choosing the inflation factor.

Big Y 전개를 통한 장치 Line의 Yield 향상 (Big Y development for line Yield Improvement in a Factor)

  • 문기주;박우종
    • 품질경영학회지
    • /
    • 제32권4호
    • /
    • pp.184-195
    • /
    • 2004
  • Current companies 집중 on how to operate and select projects to achieve the best result. 6sigma projects are chosen in the best suitable concept, which are solved by the 6Sigma experts according to the priority. And every project has to be launched not the view of individual management factors but the total factors, Big Y. Therefore, a process needs to be treated to connect the vital few factors in various processes to improve the yield, which is the main performance criteria in a manufacturing industry This report is to make the total optimization through the Vital-Few mapping between quality characteristics and process factors in a manufacturing line. Accordingly, it means to secure lower variance by making the CTP(Critical To Process) optimization and finally to improve the yield.

실시간 설비데이터를 활용한 휴대폰 메탈 프레임 공정의 다변량 모니터링 (Multivariate Monitoring of the Metal Frame Process in Mobile Device Manufacturing)

  • 강성현;김성범
    • 대한산업공학회지
    • /
    • 제42권6호
    • /
    • pp.395-403
    • /
    • 2016
  • In mobile industry, using a metal frame of devices is rapidly increased for thin and stylish designs. However, fabricating metal is one of the difficult processes because the sophisticated control of equipment is required during the whole machining time. In this study, we present an efficient multivariate monitoring procedure for the metal frame process in mobile device manufacturing. The effectiveness of the proposed procedure is demonstrated by real data from the mobile plant in one of the leading mobile companies in South Korea.

A new color management approach for dye manufacturing process with image processing and intelligent algorithm

  • Kyungwon Jang;Taechon Ahn;Lee, Dongyoon;Yangwoong Yoon;Jinhyun Kang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.56.2-56
    • /
    • 2002
  • A dye process of textile industry is important part that finally gives required quality to the textile material. To produce a proper dye for the customers, color management that precise color measurement from original color sample and rapid estimation of corresponding color recipe is most essential. In the practical dye manufacturing process, color management falls into two categories. First one is color management with an expert knowledge of colorist, the other one is computer aided way. In the former management way, color management fully depends on colorists' expert without support of the measurement and computational devices. Objective color management is impossible in this way. The...

  • PDF

미세액적의 표면에너지 제어를 통한 박막 제조 공정에 대한 연구 (A NUMERICAL STUDY ON A THIN FILM MANUFACTURING PROCESS USING THE CONTROL OF SURFACE ENERGY OF A MICRODROPLET)

  • 서영호;손기헌
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.221-226
    • /
    • 2008
  • Numerical simulation is performed for microdroplet deposition on a pre-patterned micro-structure. The level-set method for tracking the liquid-gas interface is extended to treat the immersed (or irregular-shaped) solid surface. The no-slip condition at the fluid-solid interface as well as the matching conditions at the liquid-gas interface is accurately imposed by incorporating the ghost fluid approach based on a sharp-interface representation. The method is further extended to treat the contact angle condition at an immersed solid surface. The present computation of a patterning process using microdroplet ejection demonstrates that the multiphase characteristics between the liquid-gas-solid phases can be used to improve the patterning accuracy.

  • PDF

미세액적의 표면에너지 제어를 통한 박막 제조 공정에 대한 연구 (A NUMERICAL STUDY ON A THIN FILM MANUFACTURING PROCESS USING THE CONTROL OF SURFACE ENERGY OF A MICRODROPLET)

  • 서영호;손기헌
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.221-226
    • /
    • 2008
  • Numerical simulation is performed for microdroplet deposition on a pre-patterned micro-structure. The level-set method for tracking the liquid-gas interface is extended to treat the immersed (or irregular-shaped) solid surface. The no-slip condition at the fluid-solid interface as well as the matching conditions at the liquid-gas interface is accurately imposed by incorporating the ghost fluid approach based on a sharp-interface representation. The method is further extended to treat the contact angle condition at an immersed solid surface. The present computation of a patterning process using microdroplet ejection demonstrates that the multiphase characteristics between the liquid-gas-solid phases can be used to improve the patterning accuracy.

  • PDF

차량용 볼조인트의 최악 조건을 고려한 강건 설계 (Robust Design of an Automobile Ball Joint Considering the Worst-Case Analysis)

  • 신봉수;김성욱;김종규;이권희
    • 한국기계가공학회지
    • /
    • 제16권1호
    • /
    • pp.102-111
    • /
    • 2017
  • An automobile ball joint is the element for connecting the control arm and the knuckle arm, allowing rotational motion. The ball joint consists of the stud, plug, socket, and seat. These components are assembled through the caulking process that consists of plugging and spinning. In the existing research, the pull-out strength and gap stiffness were calculated, but we did not consider the uncertainties due to the numerical analysis and production. In this study, the uncertainties of material property and tolerance are considered to predict the distributions of pull-out strength and gap stiffness. Also, pull-out strength and gap stiffness are predicted as the a distribution rather than one deterministic value. Furthermore, a robust design applying the Taguchi method is suggested.

유비쿼터스 기술 기반의 금형제조 공정관리 시스템 사례 연구 (A Case Study of Process Monitoring System for Mold Production with Ubiquitous Technology)

  • 최영;김정준;양상욱;박진표;권기억
    • 한국CDE학회논문집
    • /
    • 제14권3호
    • /
    • pp.168-175
    • /
    • 2009
  • A recent advance in RFID technology is one of the major technological drives in reducing cost in logistics, distribution and even in the manufacturing sector. However, currently the technology is practically accepted only in the area of logistics and inventory control. The characteristic of these application areas is that the technology is used in the controllable environment. In this paper, we discuss a case study of using active and passive RFID technologies to automatically gather process information in the mold factory. Active RFID tags are attached on the main parts of molds and their positions in the floor are tracked with the routers. We also discuss on the idea of using mobile device with RFID reader to inquire information for molds on the spot in the factory floor. The inquirable information includes 3D design data and basic mold data. The paper shows implementation results with hardware configuration for the testbed.