• Title/Summary/Keyword: Manufacturing Process Control

Search Result 1,619, Processing Time 0.04 seconds

Functional Nanochannels to Control Ion Transportation with Monomolecule Selectivity (단일 이온 인식형 이송 제어 기능성 나노채널 기술)

  • Kim, Jeong Hwan;Lee, Eung-Sug;Whang, Kyung-Hyun;Yoo, Yeong-Eun;Yoon, Jae-Sung
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.4
    • /
    • pp.249-255
    • /
    • 2015
  • Functional nanochannels were fabricated in order to control selective ion transportation with high permeability and low energy consumption. In this research, nanochannel platform fabrication process and surface functionalization process were developed. In addition, selective ion transportation and concentration measurement system was also set-up. By using fabricated multilayer metal membrane with electrical bias, 95% of ion ($Cl^-$) was blocked. This developed process is new-conceptional membrane fabrication technology and is expected to be applied to next-generation water purification/desalination, portable artifical kidney, and artificial sense organ.

Development of Operating Rules for Automated Guided Vehicle Systems in Heterarchical Manufacturing System (자치제어구조 생산시스템에서 무인운반차량 시스템의 운영정책 개발)

  • Hwang, Hark;Kim, Sang-Hwi
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.23 no.2
    • /
    • pp.343-357
    • /
    • 1997
  • This paper proposes a new AGV dispatching algorithm which is suitable for heterarchical manufacturing control structure. It is developed on the basis of bidding concept utilizing the information of work-in-process in incoming and outgoing buffers of workstation, and travel time of AGV. Since the bidding functions are functions of two parameters, sensitivity test is performed to find their appropriate values. The performance of the algorithm is compared with those of well-known existing rules in terms of system throughput through simulation on a hypothetical job shop type manufacturing system.

  • PDF

Multivariate process control procedure using a decision tree learning technique (의사결정나무를 이용한 다변량 공정관리 절차)

  • Jung, Kwang Young;Lee, Jaeheon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.3
    • /
    • pp.639-652
    • /
    • 2015
  • In today's manufacturing environment, the process data can be easily measured and transferred to a computer for analysis in a real-time mode. As a result, it is possible to monitor several correlated quality variables simultaneously. Various multivariate statistical process control (MSPC) procedures have been presented to detect an out-of-control event. Although the classical MSPC procedures give the out-of-control signal, it is difficult to determine which variable has caused the signal. In order to solve this problem, data mining and machine learning techniques can be considered. In this paper, we applied the technique of decision tree learning to the MSPC, and we did simulation for MSPC procedures to monitor the bivariate normal process means. The results of simulation show that the overall performance of the MSPC procedure using decision tree learning technique is similar for several values of correlation coefficient, and the accurate classification rates for out-of-control are different depending on the values of correlation coefficient and the shift magnitude. The introduced procedure has the advantage that it provides the information about assignable causes, which can be required by practitioners.

The holons settlement of the processing and assembly system for the human-oriented manufacturing system forming (인간중심의 제조시스템 구축을 위한 가공 및 조립시스템의 holon 설정)

  • Joung, Boum-Jin;Kim, Day-Sung;Kim, Man-Jin
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.639-643
    • /
    • 1996
  • The manufacturing system has been changed from labored manual process system, which is managed and operated by managers and operators, to CIMS(Computer Integrated Manufacturing System) for integration of manufacturing, research, development and consumption in the age of diverse customer's needs[6]. However, because it involves the hierarchical system composed of many sub-systems interface and its installation & setup cost is very expensive, CIMS has many difficulties in constructing the durable optimal system that is able to adapt to rapid in-outer circumstance change. So, HMS(Holonic Manufacturing System), the new conceptual manufacturing system having the self-problem-solving and self-organization[11], is instructed to solve these difficulties that it has in these days. The system flexibility in the HMS is able to be ensured, with the integration of human's strong points into mechatronics manufacturing system to reduce interference among sub-systems. In this paper, the manufacturing process rationalization and integration of the assembly line in an automobile industry, has lots of problems in efficiency and productivity, has been studied in an early stage of converting the present state of process system to HMS, which is human-oriented processing system, to improve the line efficiency, system productivity and reliability by using human capability effectively. This paper is derived into the human-oriented & object-oriented holons settlement of the shop floor system composed of processing, assembly and material handling system for the future holonic manufacturing system, which is going to be computer supported control system.

  • PDF

Minimization of Warpage of Injection Molded Parts using Dynamic Robust Design (동특성 강건 설계를 이용한 사출품의 휨 최소화)

  • Kim, Kyung-Mo;Park, Jong-Cheon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.1
    • /
    • pp.44-50
    • /
    • 2015
  • This paper presents a heuristic process-optimization procedure for minimizing warpage in injection-molded parts based on the dynamic robust design methodology. The injection molding process is known to have intrinsic variations of its process conditions due to various factors, including incomplete process control facilities. The aim of the robust design methodology advocated by Taguchi is to determine the optimum design variables in a system which is robust to variations in uncontrollable factors. The proposed procedure can determine the optimal robust conditions of injection molding processes at a minimum cost through a trade-off strategy between the degree of warpage and the packing time.

Optimum-selection in the Welding Process Variable for Torch-rotation Method of Automation Welding-machine System (토치 회전식 자동용접 시스템의 용접공정변수 최적선정)

  • 김재열
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.2
    • /
    • pp.92-101
    • /
    • 1997
  • The purpose of this welding process of the exclusive welding-machine using welding torch-rotation type is to develop a mechanism which can solve the problem of twisting of welding wires and cables. The technique was developed by revising the torch position and smooth controlling of both the normal and reverse rotation. Some of the advantages of using the torch-rotation type apply to the work-rotation technique are the practical uses of increased work space and link work with the factory automation system. Do apply the welding process, I designed and made a special unit so called torch part in order to solve the problems of kinematical. And I made a control panel which can manipulate the progress of the entire process at the work shop. Even if it will be applied to another kind of axle casing's welding work, this process can be utilized if other sizes of the fixed pin and work part is produced and changed. The development of this exclusive welding-machine could reduce the manpower of skilled welding labor and increase productivity and better quality product in comparison to the handmade product.

  • PDF

Manufacturing Fiber-Reinforced Composite Materials Based on PLA (Poly L-Lactide) Resin Using In-Situ Polymerization and Molecular Weight Measurement Using GPC (현장 중합을 이용한 PLA(Poly L-Lactide) 수지 기반 섬유 강화 복합 재료 제조 및 GPC를 이용한 분자량 측정)

  • Seon-Ju Kim;Beom-Joo Lee;Hyeong-Min Yoo
    • Design & Manufacturing
    • /
    • v.17 no.3
    • /
    • pp.28-33
    • /
    • 2023
  • The conventional FRP (Fiber Reinforced Plastic) manufacturing process used thermoset resins for ease of molding but faced the issue of non-recyclability. To address these shortcomings, a new process utilizing thermal plastic resin was developed. However, due to the high viscosity of thermal plastic resin, problems such as fiber deformation and a reduced fiber volume fraction occurred during the high-temperature, high-pressure process. In this study, to overcome the limitations of the conventional process, fiber-reinforced composite materials were manufactured through in-situ polymerization using PLA (Poly L-Lactide) resin in the VA-RTM (Vacuum Assistance Resin Transfer Molding) process. The fiber volume of the produced specimens was calculated, and resin impregnation and porosity were confirmed through optical microscopy. Additionally, molecular weight analysis using GPC (Gel Permission Chromatography) demonstrated improvements over the conventional process and emphasized the essential requirement of temperature control.

The Study on the Microbiological Limitation Standards Setting of Handmade Rice-cake by Steam Processing (수작업떡류의 증자공정에 의한 미생물학적 한계기준 설정에 관한 연구)

  • Lee, Ung-Soo;Kwon, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4310-4317
    • /
    • 2014
  • The HACCP (Hazard Analysis Critical Control Point) system was applied to Handmade Rice Cakes. The main ingredients of rice cakes, work facilities and workers were provided from the KB company located in Seogye-dong Yongsan-gu, Seoul between September 12, 2012 and February 13, 2013. The manufacturing process chart was prepared by referring to the manufacturing process of rice cake manufacturers in general. Microbiological hazard analysis of the raw materials and after the steaming process of rice-cakes showed a safe result. On the other hand, the microorganism test on the manufacturing environment and workers suggested that the microbiological hazard can be reduced through systematic cleaning and disinfection, accompanied by improved personal hygiene based on hygienic education for workers on the management of microorganisms in the working area.

A Study on the Improvement of Plastic Boat Manufacturing Process Using TOC & Statistical Analysis (TOC와 통계적 분석에 의한 플라스틱보트 제조공정 개선에 관한 연구)

  • Yoon, Gun-Gu;Kim, Tae-Gu;Lee, Dong-Hyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.130-139
    • /
    • 2016
  • The purpose of this paper is to analyze the problems and the sources of defective products and draw improvement plans in a small plastic boat manufacturing process using TOC (Theory Of Constraints) and statistical analysis. TOC is a methodology to present a scheme for optimization of production process by finding the CCR (Capacity Constraints Resource) in the organization or the all production process through the concentration improvement activity. In this paper, we found and reformed constraints and bottlenecks in plastic boat manufacturing process in the target company for less defect ratio and production cost by applying DBR (Drum, Buffer, Rope) scheduling. And we set the threshold values for the critical process variables using statistical analysis. The result can be summarized as follows. First, CCRs in inventory control, material mix, and oven setting were found and solutions were suggested by applying DBR method. Second, the logical thinking process was utilized to find core conflict factors and draw solutions. Third, to specify the solution plan, experiment data were statistically analyzed. Data were collected from the daily journal addressing the details of 96 products such as temperature, humidity, duration and temperature of heating process, rotation speed, duration time of cooling, and the temperature of removal process. Basic statistics and logistic regression analysis were conducted with the defection as the dependent variable. Finally, critical values for major processes were proposed based on the analysis. This paper has a practical importance in contribution to the quality level of the target company through theoretical approach, TOC, and statistical analysis. However, limited number of data might depreciate the significance of the analysis and therefore it will be interesting further research direction to specify the significant manufacturing conditions across different products and processes.

Dynamics Modeling and Control of a Delta High-speed Parallel Robot (Delta 고속 병렬로봇의 동역학 모델링 및 제어)

  • Kim, Han Sung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.90-97
    • /
    • 2014
  • This paper presents a simplified dynamics model, dynamics simulations, and computed torque control experiments of the Delta high-speed parallel robot. Using the typical Newton-Euler method, a simplified but accurate dynamics model with practical assumptions is derived. Accuracy and fast calculations of the dynamics are essential in the computed torque control for high-speed applications. It was found that the simplified dynamics equation is in very god agreement with the ADAMS model, and the calculation time of the inverse kinematics and inverse dynamics is about 0.04 msec. From the dynamics simulations, the cycle trajectory along the y-axis requires less peak motor torque and a lower angular velocity and less power than that along the x-axis. The computed torque control scheme can reduce the position error by half as compared to a PD control scheme. Finally, the developed Delta parallel robot prototype, half the size of the ABB Flexpicker robot, can achieve a cycle time of 0.43 sec with a 1.0kg payload.