• Title/Summary/Keyword: Manufacturing Process Control

Search Result 1,620, Processing Time 0.029 seconds

Real-time In-situ Plasma Etch Process Monitoring for Sensor Based-Advanced Process Control

  • Ahn, Jong-Hwan;Gu, Ja-Myong;Han, Seung-Soo;Hong, Sang-Jeen
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.1
    • /
    • pp.1-5
    • /
    • 2011
  • To enter next process control, numerous approaches, including run-to-run (R2R) process control and fault detection and classification (FDC) have been suggested in semiconductor manufacturing industry as a facilitation of advanced process control. This paper introduces a novel type of optical plasma process monitoring system, called plasma eyes chromatic system (PECSTM) and presents its potential for the purpose of fault detection. Qualitatively comparison of optically acquired signal levels vs. process parameter modifications are successfully demonstrated, and we expect that PECSTM signal can be a useful indication of onset of process change in real-time for advanced process control (APC).

Development of Fuzzy-Statistical Control Chart for Processing Uncertain Process Information (불명확한 공정정보 처리를 위한 퍼지-통계적 관리도의 개발)

  • 김경환;하성도
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.2
    • /
    • pp.75-80
    • /
    • 1998
  • Process information is known to have the continuous distribution in many manufacturing processes. Generalized p-chart has been developed for controlling processes by classifying the information characteristics into several groups. But it is improper to describe continuous processes with the classified process informal ion, which is based on the classical set concept. Fuzzy control chart, has been developed for the control of linguistic data, but it is also based on the dichotomous notion of classical set theory. In this paper, fuzzy sampling method is studied in order to process the uncertain data properly. The method is incorporated with the fuzzy control chart. Statistical characteristics of the fuzzy representative value are utilized to device the fuzzy-statistical control chart. The fuzzy-statistical control chart is compared with the generalized p-chart and both the sensitivity to the process information distribution change pared robustiness against the noise on the process information of the fuzzy-statistical control chart are shown to be superior.

  • PDF

A Development Study on an Engine Control Module of an Electronic Marine Diesel Engine (전자식 선박디젤엔진의 엔진제어기 개발/연구)

  • Sim, Han-Sub;Lee, Min-Kwang;Lee, Kang-Yoon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.5
    • /
    • pp.134-140
    • /
    • 2015
  • A control program of an engine control module (ECM) was developed, and its control performance was verified on a 750Ps marine diesel engine. The control method was designed for an engine rotational speed control system. For ECM hardware, the commercial rapid control prototype (RCP) ECM was used. The programming tool for control algorithm development was the MatLab/Simulink. The main control algorithm assembled many control models as engine cranking, run, and stall. Each model has sub-models to input/output control signals. The target engine speed was input signal from a speed control lever, and control output signal of the ECM was sent to the unit-injectors for fuel injection. The engine test was performed under various conditions of engine rotational speeds and dynamometer loads. The test results show that the control function of the ECM is suitable for electrical marine diesel engines.

Development of Embedded System Based Cortex-M for Smart Manufacturing (스마트 제조를 위한 Cortex-M 기반 임베디드 시스템 개발)

  • Cho, Choon-Nam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.326-330
    • /
    • 2020
  • Small-scale production control systems for smart manufacturing are becoming increasingly necessary as the manufacturing industry seeks to maximize manufacturing efficiency as the demand for customized product production increases. Correspondingly, the development of an embedded system to realize this capability is becoming important. In this study, we developed an embedded system based on an open source system that is cheaper than a widely applied programmable logic controller (PLC)-based production control system that is easier to install, configure, and process than a conventional relay control panel. This embedded system is system is based on a low-power, high-performance Cortex M4 processor and can be applied to smart manufacturing. It is designed to improve the development environment and compatibility of existing PLCs, control small-scale production systems, and enable data collection through heterogeneous communication. The real-time response characteristics were confirmed through an operation test for input/output control and data collection, and it was confirmed that they can be used in industrial sites.

Intelligent Control for Job Scheduling in Manufacturing (생산계획 수립을 위한 지능형 제어)

  • 이창훈;우광방
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.10
    • /
    • pp.1108-1120
    • /
    • 1990
  • The present study is to develop an intelligent control system for flexible manufacturing system, which is suitable for a variety of manufacturing types with smaller production rates. The controller is designed to integrate heuristic rules with optimization techniques for loading as well as flow rate of parts and ultimately meeting performance indices. The control function implemented by an optimization technique is to calculate short term production rates of parts. The heuristic control determined by production rules requires knowledge base to evaluate selected loading alternatives according to short term production rate and current process information, and also to determine final decision pertaining to loading. In this case, the knowledge base is constructed using the rules for evaluating alternatives, decision criteria, and flow control of parts in manufacturing system. The database is formulated by means of managing and updating current process information. A graphic system to monitor current status of the function and operation of manufacturing system is developed, and computer simulation is carried out to evaluate the performance of the proposed controller.

Design of Ultra-precision Micro Stage using Response Surface Methodology (반응표면분석법을 이용한 초정밀 마이크로스테이지의 설계)

  • Ye, Sang-Don;Min, Byeong-Hyeon;Lee, Jae-Kwang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.1
    • /
    • pp.39-44
    • /
    • 2006
  • Ultra precision positioning mechanism has been widely used on semiconductor manufacturing equipments, optical spectrum analyzers and cell manipulations. Ultra precision positioning mechanism consists of several actuators, sensors, guides and control systems. Its efficiency depends on each performance of components. The object of this study is to design and analyze the micro stage that is one of the equipments embodied in ultra precision positioning mechanism. The micro stage consists of PZT actuators and flexure hinges. The structural design of flexure hinge is optimized by using RSM and FEM. The control factors concerned with the design of flexure hinges of stage and arms are optimized by minimizing the equivalent stress on the hinge and maximizing 1st natural frequency based on RSM and FEM simulation under various kinds of design conditions.

  • PDF

Predicting Thermo-mechanical Characteristics from the 2nd Phase Fraction of Al-AlN Composites for LED Heat Sinks with FEM (유한요소해석을 이용한 방열용 Al-AlN 복합재의 제2상 분율에 따른 열-기계적 특성예측)

  • Yoon, Juil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.137-142
    • /
    • 2018
  • With the development of the electronic-materials industry, multi-functional metal-composite materials with high thermal conductivity and low thermal expansion must be developed for high reliability and high life expectancy. This paper is a preliminary study on the manufacturing technology of gas reaction control composite material, focusing on the prediction of the equivalent thermal properties of Al-AlN composite materials. Numerical equivalent property values are obtained by using finite element analysis and compared with theoretical formulas. Al-AlN composite materials should become the optimal composite material when the proportion of the reinforcing phase is less than 0.5.

Prediction of Thermal Expansion Coefficients using the Second Phase Fraction and Void of Al-AlN Composites Manufactured by Gas Reaction Method (가스반응법으로 제작된 Al-ALN 복합재의 제 2상 분율과 기공에 따른 열팽창계수 예측)

  • Yoon, Juil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.41-47
    • /
    • 2019
  • The advent of highly integrated, high-power electronics requires low a coefficient of thermal expansion performance to prevent delamination between the heat dissipation material and substrate. This paper reports a preliminary study on the manufacturing technology of gas reaction control composite material, focusing on the prediction of the thermal expansion coefficients of Al-AlN composite materials. We obtained numerical equivalent property values by using finite element analysis and compared the values with theoretical formulas. Al-AlN should become the optimal composite material when the proportion of the reinforcing phase is approximately 0.45.

A Milestone Generation Algorithm for Efficient Control of FAB Process in a Semiconductor Factory (반도체 FAB 공정의 효율적인 통제를 위한 생산 기준점 산출 알고리듬)

  • Baek, Jong-Kwan;Baek, Jun-Geol;Kim, Sung-Shick
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.4
    • /
    • pp.415-424
    • /
    • 2002
  • Semiconductor manufacturing has been emerged as a highly competitive but profitable business. Accordingly it becomes very important for semiconductor manufacturing companies to meet customer demands at the right time, in order to keep the leading edge in the world market. However, due-date oriented production is very difficult task because of the complex job flows with highly resource conflicts in fabrication shop called FAB. Due to its cyclic manufacturing feature of products, to be completed, a semiconductor product is processed repeatedly as many times as the number of the product manufacturing cycles in FAB, and FAB processes of individual manufacturing cycles are composed with similar but not identical unit processes. In this paper, we propose a production scheduling and control scheme that is designed specifically for semiconductor scheduling environment (FAB). The proposed scheme consists of three modules: simulation module, cycle due-date estimation module, and dispatching module. The fundamental idea of the scheduler is to introduce the due-date for each cycle of job, with which the complex job flows in FAB can be controlled through a simple scheduling rule such as the minimum slack rule, such that the customer due-dates are maximally satisfied. Through detailed simulation, the performance of a cycle due-date based scheduler has been verified.