• Title/Summary/Keyword: Manufacturing Feature

Search Result 392, Processing Time 0.025 seconds

Using Neural Network Approach for Monitoring of Chatter Vibration in Turning Operations (신경망을 이용한 선삭가공 시 Chatter vibration의 감시)

  • 남용석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.28-33
    • /
    • 2000
  • The monitoring of the chatter vibration is necessarily required to do automatic manufacturing system. To this study, we constructed a sensing system using tool dynamometer in order to the chatter vibration on cutting process. And a approach to a neural network using the feature of principal cutting force signals is proposed. with the error back propagation training process, the neural network memorized and classified the feature of principal cutting force signals. As a result, it is shown by neural network that the chatter vibration can be monitored effectively.

  • PDF

Machine-Part Cell Formation based on Kohonen화s Self Organizing Feature Map (Kohonen 자기조직화 map 에 기반한 기계-부품군 형성)

  • ;;山川 烈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.315-318
    • /
    • 1996
  • The machine-part cell formation means the grouping of similar parts and similar machines into families in order to minimize bottleneck machines, bottleneck parts, and inter-cell part movements in cellular manufacturing systems and flexible manufacturing systems. The cell formation problem is knows as a kind of NP complete problems. This paper briefly introduces the cell-formation problem and proposes a cell formation method based on the Kohonen's self-organizing feature map which is a neural network model. It also shows some experiment results using the proposed method. The proposed method can be easily applied to the cell formation problem compared to other meta-heuristic based methods. In addition, it can be used to solve large-scale cell formation problems.

  • PDF

Formulating 3-dimensional modeling from the orthographic projection drawing using feature recognition technique. (형상인식을 이용한 정사영 도면의 3차원 모델링에 관한 연구)

  • Lee, Seok-Hee;Bahn, Kab-Soo;Lee, Hyoung-Kook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.180-189
    • /
    • 1993
  • In CAD/CAM system, it is required to produce manufacturing information from the deawing output of design system. The most difficult task is to formulate 3-dimentional modeling information utilizing 2-dimentional data. This paper addresses the automatic converting steps of 2-dimentional drawing data to 3-dimentional solid modeling using feature recognition rules as an expert shell. With the standardization of design process and recognition rule as a fundamental steps, the developed system shows a good application tool which can interface the design and manufacturing stage in CAD/CAM system of PC level.

  • PDF

A Computer-Aided Inspection Planning System for On-Machine Measurement - Part I : Global Inspection Planning -

  • Lee, Hong-Hee;Cho, Myeong-Woo;Yoon, Gil-Sang;Choi, Jin-Hwa
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1349-1357
    • /
    • 2004
  • Computer-Aided Inspection Planning (CAIP) is the integration bridge between CAD/CAM and Computer Aided Inspection (CAI). A CAIP system for On-Machine Measurement (OMM) is proposed to inspect the complicated mechanical parts efficiently during machining or after machining. The inspection planning consists of Global Inspection Planning (GIP) and Local Inspection Planning (LIP). In the GIP, the system creates the optimal inspection sequence of the features in a part by analyzing the various feature information such as the relationship of the features, Probe Approach Directions (PAD), etc. Feature groups are formed for effective planning, and special feature groups are determined for sequencing. The integrated process and inspection plan is generated based on the sequences of the feature groups and the features in a feature group. A series of heuristic rules are developed to accomplish it. In the LIP of Part II, the system generates inspection parameters. The integrated inspection planning is able to determine optimum manufacturing sequence for inspection and machining processes. Finally, the results are simulated and analyzed to verify the effectiveness of the proposed CAIP.

A Study on the Development of Feature-Based NC Part Programming System 'FeaTURN' for Turning Operation (특징형상을 이용한 NC선반가공 프로그래밍 시스템 'FeaTURN'의 개발에 관한 연구)

  • 강신한;이재원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.38-45
    • /
    • 1993
  • The feature based modeling approach is useful for post-CAD related works such as process planning and NC part programming. This paper describes the development of 'FeaTURN' system which is feature based NC part programming system for turning operation. The programming task in 'FeaTURN' system becomes easy and effective with the assistance of feature icons. The manufacturing attributes can be handled toghther with the features during input procedure. The cutter location data (CLD) is determined by the processor module. The post process module converts the CL data to machine control data (MCD). Also, the system graphically displays the tool path.

Feature Based Decision Tree Model for Fault Detection and Classification of Semiconductor Process (반도체 공정의 이상 탐지와 분류를 위한 특징 기반 의사결정 트리)

  • Son, Ji-Hun;Ko, Jong-Myoung;Kim, Chang-Ouk
    • IE interfaces
    • /
    • v.22 no.2
    • /
    • pp.126-134
    • /
    • 2009
  • As product quality and yield are essential factors in semiconductor manufacturing, monitoring the main manufacturing steps is a critical task. For the purpose, FDC(Fault detection and classification) is used for diagnosing fault states in the processes by monitoring data stream collected by equipment sensors. This paper proposes an FDC model based on decision tree which provides if-then classification rules for causal analysis of the processing results. Unlike previous decision tree approaches, we reflect the structural aspect of the data stream to FDC. For this, we segment the data stream into multiple subregions, define structural features for each subregion, and select the features which have high relevance to results of the process and low redundancy to other features. As the result, we can construct simple, but highly accurate FDC model. Experiments using the data stream collected from etching process show that the proposed method is able to classify normal/abnormal states with high accuracy.

A Study on Anomaly Detection Model using Worker Access Log in Manufacturing Terminal PC (제조공정 단말PC 작업자 접속 로그를 통한 이상 징후 탐지 모델 연구)

  • Ahn, Jong-seong;Lee, Kyung-ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.2
    • /
    • pp.321-330
    • /
    • 2019
  • Prevention of corporate confidentiality leakage by insiders in enterprises is an essential task for the survival of enterprises. In order to prevent information leakage by insiders, companies have adopted security solutions, but there is a limit to effectively detect abnormal behavior of insiders with access privileges. In this study, we use the Unsupervised Learning algorithm of the machine learning technique to effectively and efficiently cluster the normal and abnormal access logs of the worker's work screen in the manufacturing information system, which includes the company's product manufacturing history and quality information. We propose an optimal feature selection model for anomaly detection by studying clustering methods.

Application of Distributed Objects for CAPP (공정계획을 위한 분산객체의 응용)

  • 김준국;이홍희
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.2
    • /
    • pp.155-168
    • /
    • 2002
  • As the market and the organizations of an enterprise expand globally, the rapid and accurate communication gets more important for product manufacturing. The manufacturing information flow among the designers, the process planners and the shop floors is characterized and modelled. Its methods are constructed using distributed objects. Their introduction to the network-based CAPP system offers speed and safety for the system and makes the reconstruction and distribution of the application programs easy. The manufacturing processes are generated based on the feature information of a designed part, then the manufacturing resources are selected using the process planning logic which is implemented by distributed objects. The databases and distributed objects are integrated under the recent internet environments. The developed system makes it possible to manipulate and to transfer the process planning and manufacturing data everywhere in the world.

Evaluation of Competitiveness of Domestic Aircraft Manufacturing Enterprises Using Data Mining Techniques

  • Ok, Juseon;Park, Chanwoo
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.6
    • /
    • pp.26-32
    • /
    • 2021
  • The global aircraft-manufacturing industry ecosystem is characterized by the international division of labor through the worldwide supply chain and by the concentration of value added at the top of the supply chain. As a result, the competition for entry into the top supply chain and for order expansion is becoming increasingly intensive. To increase their orders, domestic aircraft manufacturing enterprises need to enhance their competitiveness by evaluating and analyzing it. However, most domestic aircraft manufacturing companies are unaware of the need to quantitatively evaluate their competitiveness. It is challenging to perform such an evaluation, and there are few research cases. In this study, we quantitatively evaluated and analyzed the competitiveness of domestic aircraft manufacturers by using data mining techniques. Thereby, implications for enhancing their competitiveness could be identified.

Ultrasonic Signal Analysis with DSP for the Pattern Recognition of Welding Flaws

  • Kim, Jae-Yeol;Cho, Gyu-Jae;Kim, Chang-Hyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.106-110
    • /
    • 2000
  • The researches classifying the artificial flaws in welding parts are performed using the pattern recognition technology. For this purpose the signal pattern recognition package including user defined function is developed and the total procedure is made up the digital signal processing, feature extraction, feature selection, classfier design. Specially it is composed with and discussed using the ststistical classfier such as the linear discriminant function classfier, the empirical Bayesian classfier.

  • PDF