• 제목/요약/키워드: Manufacturing Feature

검색결과 394건 처리시간 0.03초

쾌삭 303계 스테인리스강 소형 압연 선재 제조 공정의 생산품질 예측 모형 (Quality Prediction Model for Manufacturing Process of Free-Machining 303-series Stainless Steel Small Rolling Wire Rods)

  • 서석준;김흥섭
    • 산업경영시스템학회지
    • /
    • 제44권4호
    • /
    • pp.12-22
    • /
    • 2021
  • This article suggests the machine learning model, i.e., classifier, for predicting the production quality of free-machining 303-series stainless steel(STS303) small rolling wire rods according to the operating condition of the manufacturing process. For the development of the classifier, manufacturing data for 37 operating variables were collected from the manufacturing execution system(MES) of Company S, and the 12 types of derived variables were generated based on literature review and interviews with field experts. This research was performed with data preprocessing, exploratory data analysis, feature selection, machine learning modeling, and the evaluation of alternative models. In the preprocessing stage, missing values and outliers are removed, and oversampling using SMOTE(Synthetic oversampling technique) to resolve data imbalance. Features are selected by variable importance of LASSO(Least absolute shrinkage and selection operator) regression, extreme gradient boosting(XGBoost), and random forest models. Finally, logistic regression, support vector machine(SVM), random forest, and XGBoost are developed as a classifier to predict the adequate or defective products with new operating conditions. The optimal hyper-parameters for each model are investigated by the grid search and random search methods based on k-fold cross-validation. As a result of the experiment, XGBoost showed relatively high predictive performance compared to other models with an accuracy of 0.9929, specificity of 0.9372, F1-score of 0.9963, and logarithmic loss of 0.0209. The classifier developed in this study is expected to improve productivity by enabling effective management of the manufacturing process for the STS303 small rolling wire rods.

적층 방향에 따른 F.R.P 구조강도특성에 관한 연구 (A Study of Property F.R.P Structure Strength According to the Direction of Lay-up in the Small Ship)

  • 고재용;배동균;윤순동
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2002년도 추계공동학술대회논문집
    • /
    • pp.101-105
    • /
    • 2002
  • F.R.P는 수지에 유리섬유를 적층하여 제작하는 방법으로 온돈 습도 등의 적층조건에 따라 기계적.물리적 특성치가 변화하며 구성성분의 함량에 따라 다양한 편차를 나타내는 특징이 있다. 강선이나 알루미늄선의 경우에는 선급의 규칙과 기타 관련규정에 적합한 규격치수의 철강재와 알루미늄을 구입하여 사용하면 되는데 반해 F.R.P는 성형을 제작하여 그 위에 유리섬유를 적층하여 건조하는 방법으로 강선 설계시의 강판의 선정 및 부재의 조합에 의한 설계방식과는 달리 재료설계와 구조설계를 동시에 행하여야 하는 특징으로 F.R.P선박의 관련 규칙은 강선에 비하여 설계자유도가 큰 반면 부재에 대한 구체적인 기준이 확정되지 못하고 잠정규정을 설정하여 사용하고 있다. 이에 본 연구에서는 선박의 길이가 12미터(M)급인 소형 F.R.P선을 기준으로 F.R.P의 재료적 특성과 강토 방향성에 따른 유리섬유의 기계적 특성을 조사하였으며 소형 F.R.P선박의 구조설계에 필요한 기초자료를 마련하였다.

  • PDF

웹기반 유연 생산시스템 사용자 인터페이스 (A Study on the User Interface of Web-based Flexible Manufacturing System)

  • 박제웅;김원중
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.68-72
    • /
    • 2004
  • A practical method to investigate the user interface of web based Flexible Manufacturing System(FMS) on the internet environment is established. Because the industrial FMS controller requires a lot of gadget, such as switch, dial, button, etc., for actual work-site flexible operation sufficiently, the user interface of the controller is significantly complex. The support for operational convenience of FMS controller can increase productivity and efficiency of the user, operational personnel of FMS. While most FMS provide their application programming interface(API) and graphical user interface(GUI) with adequate mechanism itself when used in stand alone, there is increasing demand for FMS that can operate with the intuitional user interface find virtual reality(V/R) environment. This thesis considers the intuitional user interface of Web-based FMS first, and from this, goes a step further, improves as virtual reality environment of FMS on the internet environments by using the feature based modeling technique approach and cartoon rendering. The feature-based modeling technique approach is applied to FMS line which is consist of facilities such as machining center, CNC lathe, autonomous guided vehicle, rail guided vehicle, and various controllers. In this study, the FMS established the intuitional user interface is able to obtain not only the operational convenience but also the enough productivity and significant efficiency.

  • PDF

충진재를 이용한 특징형상 가공용 RFPE 공정 개발 (Development of Feature-based Encapsulation Process using Filler Material)

  • 최두선;이수홍;신보성;윤경구;황경현;이호영
    • 한국정밀공학회지
    • /
    • 제18권1호
    • /
    • pp.98-103
    • /
    • 2001
  • Machining is the commonly used process in the manufacturing of prototypes. This process offers several advantages, such as rigidity of the machine, precision of the machine, precision of the operation and specially a quick delivery. The weight and immobility of the machine support and immobilize the part during the operation. However, despite these advantages it shows, machining still presents several limitations. The immobilization, location and support of the part are referred to as fixturing or workholding and present the biggest challenge for time efficient machining. So it is important to select and design the appropriate fixturing assembly. This assembly depends on the complexity of the part and the tool paths and may require the construction of dedicated fixtures. With traditional techniques, the range of fixturable shapes is limited and the identification of suitable fixtures in a given setup involves complex reasoning. To solve this limitation and to apply the automation, this paper presents the Reference Free Part Encapsulation(RFPE) and implementation of the encapsulation system. The feature-based modeling system and the encapsulation system are implemented. The small part of which it is difficult to find out the appropriate fixturing assembly is made by this system.

  • PDF

Fault Diagnosis of Bearing Based on Convolutional Neural Network Using Multi-Domain Features

  • Shao, Xiaorui;Wang, Lijiang;Kim, Chang Soo;Ra, Ilkyeun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권5호
    • /
    • pp.1610-1629
    • /
    • 2021
  • Failures frequently occurred in manufacturing machines due to complex and changeable manufacturing environments, increasing the downtime and maintenance costs. This manuscript develops a novel deep learning-based method named Multi-Domain Convolutional Neural Network (MDCNN) to deal with this challenging task with vibration signals. The proposed MDCNN consists of time-domain, frequency-domain, and statistical-domain feature channels. The Time-domain channel is to model the hidden patterns of signals in the time domain. The frequency-domain channel uses Discrete Wavelet Transformation (DWT) to obtain the rich feature representations of signals in the frequency domain. The statistic-domain channel contains six statistical variables, which is to reflect the signals' macro statistical-domain features, respectively. Firstly, in the proposed MDCNN, time-domain and frequency-domain channels are processed by CNN individually with various filters. Secondly, the CNN extracted features from time, and frequency domains are merged as time-frequency features. Lastly, time-frequency domain features are fused with six statistical variables as the comprehensive features for identifying the fault. Thereby, the proposed method could make full use of those three domain-features for fault diagnosis while keeping high distinguishability due to CNN's utilization. The authors designed massive experiments with 10-folder cross-validation technology to validate the proposed method's effectiveness on the CWRU bearing data set. The experimental results are calculated by ten-time averaged accuracy. They have confirmed that the proposed MDCNN could intelligently, accurately, and timely detect the fault under the complex manufacturing environments, whose accuracy is nearly 100%.

VMS를 위한 Unified Modeler Framework 개발 (Development of a Unified Modeler Framework for Virtual Manufacturing System)

  • 이덕웅;황현철;최병규
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2004년도 춘계공동학술대회 논문집
    • /
    • pp.52-55
    • /
    • 2004
  • VMS (virtual manufacturing system) may be defined as a transparent interface/control mechanism to support human decision-making via simulation and monitoring of real operating situation through modeling of all activities in RMS (real manufacturing system). The three main layers in VMS are business process layer, manufacturing execution layer, and facility operation layer, and each layer is represented by a specific software system having its own input modeler module. The current version of these input modelers has been implemented based on its own 'local' framework, and as a result, there are no information sharing mechanism, nor a common user view among them. Proposed in this paper is a unified modeler framework covering the three VMS layers, in which the concept of PPR (product-process-resource) model is employed as a common semantics framework and a 2D graphic network model is used as a syntax framework. For this purpose, abstract class PPRObject and GraphicObject are defined and then a subclass is inherited from the abstract class for each application layer. This feature would make it easier to develop and maintain the individual software systems. For information sharing, XML is used as a common data format.

  • PDF

지역 산업구조를 고려한 기업평가지표 모형 (A Model of Business Evaluation Index for a Regional Industry)

  • 정해석;김병극;유우식
    • 산업경영시스템학회지
    • /
    • 제33권3호
    • /
    • pp.79-86
    • /
    • 2010
  • Causing by economic stagnation and financial management difficulty of the domestic small and medium business company, the actual condition which enlarges the plan of politic funds increased from the government. The government authority as the SBC (small and medium business promotion corporation) evaluates the domestic small and medium business company, and directly executes a governmental politic funds. Financial analysis is a important factor of enterprise evaluation among various valuation bases. However because of applying to the whole domestic manufacturing industry on financial evaluation, Current financial evaluation index effectively cannot reflect the feature of a regional industry. A whole manufacturing industry index considers a standard for the comparison evaluation of domestic manufacturing industry and compares with the other industries and the world-wide nation industry change, But, there is a difference from indexes of corresponding industry in specific regions. This paper proposes a model of evaluation index for the efficient execution of politic funds. We considers three manufacturing industries for proposed model which are shipbuilding, machine tool and airline industries in Gyeongsangnam-do region.

Nonlinear Diffusion and Structure Tensor Based Segmentation of Valid Measurement Region from Interference Fringe Patterns on Gear Systems

  • Wang, Xian;Fang, Suping;Zhu, Xindong;Ji, Jing;Yang, Pengcheng;Komori, Masaharu;Kubo, Aizoh
    • Current Optics and Photonics
    • /
    • 제1권6호
    • /
    • pp.587-597
    • /
    • 2017
  • The extraction of the valid measurement region from the interference fringe pattern is a significant step when measuring gear tooth flank form deviation with grazing incidence interferometry, which will affect the measurement accuracy. In order to overcome the drawback of the conventionally used method in which the object image pattern must be captured, an improved segmentation approach is proposed in this paper. The interference fringe patterns feature, which is smoothed by the nonlinear diffusion, would be extracted by the structure tensor first. And then they are incorporated into the vector-valued Chan-Vese model to extract the valid measurement region. This method is verified in a variety of interference fringe patterns, and the segmentation results show its feasibility and accuracy.

Establishment and Application of a Femtosecond-laser Two-photon-polymerization Additive-manufacturing System

  • Li, Shanggeng;Zhang, Shuai;Xie, Mengmeng;Li, Jing;Li, Ning;Yin, Qiang;He, Zhibing;Zhang, Lin
    • Current Optics and Photonics
    • /
    • 제6권4호
    • /
    • pp.381-391
    • /
    • 2022
  • Two-photon-polymerization additive-manufacturing systems feature high resolution and precision. However, there are few reports on specific methods and possible problems concerning the use of small lasers to independently build such platforms. In this paper, a femtosecond-laser two-photon-polymerization additive-manufacturing system containing an optical unit, control unit, monitoring unit, and testing unit is built using a miniature femtosecond laser, with a detailed building process and corresponding control software that is developed independently. This system has integrated functions of light-spot detection, interface searching, micro-/nanomanufacturing, and performance testing. In addition, possible problems in the processes of platform establishment, resin preparation, and actual polymerization for two-photon-polymerization additive manufacturing are explained specifically, and the causes of these problems analyzed. Moreover, the impacts of different power levels and scanning speeds on the degree of polymerization are compared, and the influence of the magnification of the object lens on the linewidth is analyzed in detail. A qualitative analysis model is established, and the concepts of the threshold broadening and focus narrowing effects are proposed, with their influences and cooperative relation discussed. Besides, a linear structure with micrometer accuracy is manufactured at the millimeter scale.

하향식 설계방식을 지원하는 새로운 개념의 CAD 시스템 (CAD System of New Concept to Support Top-Down Approach in Design)

  • 김성환;이건우
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1604-1618
    • /
    • 1995
  • In the process of mechanical assembly design, assembly modeling systems have been used mainly for the design verification before manufacturing by enabling to check the interference and/ or the dynamic and kinematic performance. However, the conventional assembly modeling systems have a shortcoming that they can not be used in the initial design stage but can be used only after the design is fully completed. In other words conventional assembly modeling systems provide bottom-up modeling which means that the detailed modeling of components must precede the definition of relationships between them. To resolve this problem, an assembly modeling system is proposed to provide a top-down modeling environment in which components and assembly can be modeled simultaneously. To this end, an assembly data structure suitable for top-down assembly modeling has been established. Feature positioning Module(FPM) using geometric constraints has been also developed. The Sekective Solving Method proposed for FPM is based on the priority between the constraint equations and enables the designer's intent expressed by geometric constraints to be maintained throughout the whole modeling process. Finally, the feature based modeling technique using two-level features has been developed. Two-level features include an abstract model and a detailed model in a merged form in non-manifold data frame.