• Title/Summary/Keyword: Mantle field

Search Result 43, Processing Time 0.031 seconds

Geochemical and Isotopic Studies of the Cretaceous Igneous Rocks in the Yeongdong basin, Korea: Implications for the origin of magmatism in a pull-apart basin

  • H. Sagong;S.T. Kwon;C.S. Cheong;Park, S. H.
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2001.06a
    • /
    • pp.95-95
    • /
    • 2001
  • The Yeongdong basin is one of the pull-apart basins in the southwestern part of the Korean Peninsula that has developed during Cretaceous sinistal fault movement. The bimodal igneous activities (basalts and rhyolites) in the basin appear to be closely associated with the basin development. Here, we discuss the origin of the igneous rocks using chemical and radiogenic isotope data. Basaltic (48.4-52.7 wt% SiO$_2$) and rhyolitic (70.3-70.8 wt% SiO$_2$) rocks are slightly alkalic in a total alkali-silica diagram. The rhyolitic rocks with have unusually high K$_2$O contents (5.2-6.0 wt%). The basaltic rocks show an overall pattern of within-plate basalt in a MORB-normalized spider diagram, but have distinct negative anomaly of Nb, which indicates a significant amount of crustal component in the magma. The basaltic rocks plot within the calc-alkaline basalt field in the Hf/3-Th-Ta and Y/l5-La/10-Nb/8 discrimination diagrams. The eNd(T) values of the basaltic rocks (-13.6 to 14.3) are slightly higher than those of the rhyolitic rocks (-14.1 to 15.2), and the initial Sr isotopic ratios of the former (0.7085-0.7093) are much lower than those of the latter (0.7140-0.7149). However, the initial Nd and Sr isotope ratios of the igneous rocks in the Yeongdong basin are similar to those of the nearby Cretaceous igneous rocks in the Okcheon belt. The Pb isotope ratios plot within the field of Mesozoic granitoids outside of the Gyeongsang basin in Pb-Pb correlation diagrams. Since a basaltic magma requires the mantle source, the enriched isotopic signatures and negative Nb anomaly of the basaltic rocks suggest two possibilities for their origin: enriched mantle lithospheric source, or depleted mantle source with significant amount of crustal contamination. However, we prefer the first possibility since it would be difficult for a basaltic magma to maintain its bulk composition when it is significantly contaminated with granitic crustal material. The slightly more enriched isotopic signatures of rhyolitic rocks also suggest two possibilities: differentiate of the basaltlc magma with some crustal contamination, or direct partial melting of the lower crust. Much larger exposed volume of the rhyolitic rocks, compared with the basaltic rocks, indicates the latter possibility more favorable.

  • PDF

Petrogenesis of Early Cretaceous Magmatism in Eastern China and the Gyeongsang Basin, Korean Peninsula (동중국과 한반도 경상분지의 백악기초기 화성활동의 성인 고찰)

  • Choi, Sung Hi
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.51-67
    • /
    • 2016
  • Geochemical characteristics of the Early Cretaceous igneous rocks from eastern China and the Gyeongsang Basin, Korean Peninsula has been summarized. They have wide range of lithological variation with extrusive picrite-basalt-andesite-trachyte-rhyolite and lamprophyre, and intrusive gabbro-diorite-monzonite-syenite-granite and diabase in eastern China, mostly belonging to the high-K calc-alkaline or shoshonitic series. The volcanic rocks intercalated with the Hayang Group sedimentary assemblages in the Gyeongsang basin are high-K to shoshonitic basaltic trachyandesites. The Early Cretaceous basaltic rocks studied mostly fall within the field of within-plate basalts on the Zr/Y-Zr and Nb-Zr-Y tectonic discrimination diagrams. On a Sr-Nd isotope correlation diagram, basaltic rocks from the North China block (NCB) and the continent-continent collision zone (CZ) between the North and South China blocks plot into the enriched lower right quadrant along the extension of the mantle array. The initial $^{87}Sr/^{86}Sr$ ratios of basaltic rocks from the South China block (SCB) are indistinguishable from those of the NCB and CZ basaltic rocks, but their ${\varepsilon}_{Nd}$ (t) values are relatively more elevated, plotting in right side of the mantle array. Basaltic rocks from the NCB and CZ are characterized by low $^{206}Pb/^{204}Pb(t)$ ratios, lying to the left of the Geochron on the $^{207}Pb/^{204}Pb(t)$ vs. $^{206}Pb/^{204}Pb(t)$ correlation. Meanwhile, the SCB basaltic rocks have relatively radiogenic Pb isotopic compositions compared with those of the NCB and CZ basaltic rocks. Basaltic rocks from the Hayang Group plot within the field of the NCB basaltic rocks in Sr-Nd and Pb-Pb isotope spaces. Metasomatically enriched subcontinental lithospheric mantle (SCLM) is likely to have been the dominant source for the early Cretaceous magmatism. Asthenospheric upwelling under an early Cretaceous extensional tectonic setting in eastern China and the Korean Peninsula might be a heat source for melting of the enriched SCLM. Metasomatic agents proposed include partial melts of lower continental crust delaminated and foundered into the mantle or subducted Yangtze continental crust, or fluid/melt derived from the subducted paleo-Pacific plate.

Extinction, Flood Basalts, and Geomagnetic Field (멸종, 범람 현무암과 지구자기장)

  • Yu, Yong-Jae
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.33-36
    • /
    • 2008
  • For the past 300 Ma, massive extinctions are associated with major flood basalt eruptions. The geomagnetic Superchrons (Cretaceous Normal Superchron, Kiaman Long Reversed Superchron, Moyero Long Reversed Superchron) precede the major flood basalt eruptions and massive extinctions. It is likely that upswing of mantle plumes is responsible for the generation of continental flood basalt. Eruption of flood basalts results in a catastrophic climate change as well as a massive genus depletion.

  • PDF

Importance of PET/CT Scan Use in Planning Radiation Therapy for Lymphoma

  • Milana, Mitric-Askovic;Marko, Erak;Miroslav, Latinovic;Tihomir, Dugandzija
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.5
    • /
    • pp.2051-2054
    • /
    • 2015
  • Background: Radiation therapy is a key part of the combined modality treatment for Hodgkin's lymphoma (HL) and non-Hodgkin's lymphoma (NHL), which can achieve locoregional control of disease. The 3D-conformal radiation oncology can be extended-field (EFRT), involved-field (IFRT) and involved node (INRT). New techniques have resulted in a smaller radiation field and lower dose for critical organs such as lung heart and breast. Materials and Methods: In our research, we made a virtual simulation for one patient who was treated in four different radiotherapeutic techniques: mantle field (MFRT), EFRT, IFRT and INRT. After delineatiion we compared dose-volume histograms for each technique. The fusion of CT for planning radiotherapy with the initial PET/CT was made using Softver Xio 4.6 in the Focal program. The dose for all four techniques was 36Gy. Results: Our results support the use of PET/CT in radiation therapy planning. With IFRT and INRT, the burden on the organs at risk is less than with MFRT and EFRT. On the other hand, the dose distribution in the target volume is much better with the latter. Conclusions: The aim of modern radiotherapy of HL and NHL is to reduce the intensity of treatment and therefore PET/CT should be used to reduce and not increase the amount of tissue receiving radiation.

Initial Evaluation using Geochemical Data to infer Tectonic Setting of Mt. Baekdu/Changbaishan Volcano (백두산 화산의 지체구조 추론을 위한 지구화학적 데이터를 이용한 기초 평가)

  • Yun, Sung-Hyo;Chang, Cheolwoo;Pan, Bo
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.128-139
    • /
    • 2022
  • This study aimed to investigate the tectonic setting of the volcanic edifice at Mt. Baekdu by analyzing petrochemical characteristics of Holocene felsic volcanic rocks distributed in the Baekdusan stratovolcano edifice and summit of the Cheonji caldera rim, as well as Pleistocene mafic rocks of the Gaema lava plateau and Changbaishan shield volcano edifice. During the early eruption phases, mafic eruption materials, with composition ranging from alkali basalt to trachybasalt, or from subalkaline (tholeiitic) basalt to basaltic andesite formed the Gaema lava plateau and Changbaishan shield volcanic edifice, whereas the Baekdusan stratovolcano edifice and Holocene tephra deposits near the summit of the Cheonji caldera comprises trachytic and rhyolitic compositions. Analysis results revealed bimodal compositions with a lack of 54-62 SiO2, between the felsic and mafic volcanic rocks. This suggested that magmatic processes occurred at the locations of extensional tectonic settings in the crust. Mafic volcanic rocks were plotted in the field of within-plate volcanic zones or between within-plate alkaline and tholeiite zones on the tectonic discrimination diagram, and it was in good agreement with the results of the TAS diagram. Felsic volcanic rocks were plotted in the field of within-plate granite tectonic settings on discrimination diagrams of granitic rocks. None of the results were plotted in the field of arc islands or continental margin arcs. The primitive mantle-normalized spider diagram did not show negative (-) anomalies of Nb and Ti, which are distinctive characteristics of subduction-related volcanic rocks, but exhibited similar patterns of ocean island basalt. Trace element compositions showed no evidence of, magmatic processes related to subduction zones, indicating that the magmatic processes forming the Baekdusan volcanic field occurred in an intraplate environment. The distribution of shallow earthquakes in this region supports the results. The volcanic rocks of the Baekdusan volcanic field are interpreted as the result of intraplate volcanism originating from the upwelling of mantle material during the Cenozoic era.

Petrogenesis of Mesozoic granites at Garorim Bay, South Korea: evidence for an exotic block within the southwestern Gyeonggi massif?

  • Kim, Ji In;Choi, Sung Hi;Yi, Keewook
    • Geosciences Journal
    • /
    • v.23 no.1
    • /
    • pp.1-20
    • /
    • 2019
  • We present data from the Mesozoic Keumkang, Palbong, and Baekhwa granites in Garorim Bay, in the southwestern part of the Gyeonggi massif, South Korea. Using major and trace element concentrations, Sr-Nd-Pb isotopic compositions, and sensitive high-resolution ion microprobe (SHRIMP) zircon U-Pb ages, we aim to constrain the petrogenesis of the granites and explain their origin within a broader regional geological context. SHRIMP U-Pb zircon ages of $232.8{\pm}3.2$, $175.9{\pm}1.2$, and $176.8{\pm}9.8$ Ma were obtained from the Keumkang, Palbong and Baekhwa granites, respectively. The Late Triassic Keumkang granites belong to the shoshonite series and show an overall enrichment in large ion lithophile elements (LILE), a depletion in high field strength elements (HFSE) relative to primitive mantle, compared with neighboring elements in the primitive mantle-normalized incompatible trace element diagram with notable high Ba and Sr contents, and negligible Eu anomalies. The Keumkang granites are typified by highly radiogenic Sr and unradiogenic Nd and Pb isotopic compositions: $(^{87}Sr/^{86}Sr)_i=0.70931-0.70959$, $(^{143}Nd/^{144}Nd)_i=0.511472-0.511484$ [$({\varepsilon}_{Nd})_i=-17.0$ to -16.7], and $(^{206}Pb/^{204}Pb)=17.26-17.27$. The Middle Jurassic Palbong and Baekhwa granites belong to the medium- to high-K calc-alkaline series, and show LILE enrichment and HFSE depletion similar to the Keumkang granites, but exhibit significant negative anomalies in Ba, Sr, and Eu. Furthermore, they have elevated Y and Yb contents at any given $SiO_2$ content compared with other Jurassic granitoids from the Gyeonggi massif. The Palbong and Baekhwa granites have slightly less radiogenic Sr and more radiogenic Nd and Pb isotopic compositions [$(^{87}Sr/^{86}Sr)_i=0.70396-0.70908$, $(^{143}Nd/^{144}Nd)_i=0.511622-0.511660$, $({\varepsilon}_{Nd})_i=-15.4$ to -14.7, $(^{206}Pb/^{204}Pb)=17.56-17.76$] relative to the Keumkang granites. The Keumkang granites are considered to have formed in a post-collisional environment following the Permo-Triassic Songrim orogeny that records continent-continent collision between the North and South China blocks, and may have formed by fractional crystallization of metasomatized lithospheric mantle-derived mafic melts. The Palbong and Baekhwa granites may have been produced from a gabbroic assemblage at pressures of less than ~15 kbar, associated with subduction of the paleo-Pacific (Izanagi) plate at the Eurasian continental margin. Elevated ${\varepsilon}_{Nd}(t)$ values in the granitoids from the southwestern part of the Gyeonggi massif relative to those of the central and northern parts, together with the comparatively shallow depth of origin, imply the presence of an exotic block in the Korean lithosphere.

지구의 비쌍극자 자장과 편각

  • Park, Chang-Go
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.53-53
    • /
    • 2010
  • 지표위의 어떤 지점에서의 지구자기의 수평분력 방향과 진북방향 사이의 각을 편각(Declination)이라고 정의한다. 쉽게 말하면 편각은 나침반의 자침이 가러 키는 방향과 진북방향과의 사이 각을 말한다. 대부분의 사람들은 나침반의 자침이 북자기극(North magnetic pole)을 가러킨다고 잘못알고 있다. 지구 다이나모설(Geodynamo theory)에 의하면 주로 철(약 90%)로 구성된 외핵 속에서 계속 생성 유지되고 있는 복잡한 (각각 나선형(helical)의 회전축에 대체로 평행하거나 평행하지 않은) 대류(Convection currents)에 수반하는 전류가 복잡한 지구자기장을 형성한다. 지표상에서 측정한 지구자기장의 자료를 Spherical harmonic analysis 으로 분석하면 한 개의 커다란 쌍극자(Dipole) (Inclined geocentric dipole 또는 주된 자기장(Main field) 이라고 부름), 적도쌍극자(Equatorial dipole), 4극자 (Quadrupoles), 8극자(Octupoles) 등의 여러 개의 크고 작은 쌍극자들의 총합이 지구자기장의 근원인 것처럼 해석되고 있다. 어떤 지점에서의 지구자기장의 방향은 외핵에서 생성된 천체 자기장에서 Main field를 제거한 나머지 자기장과, 상부 맨틀(upper mantle), 지각 및 지표상에 존재하는 인공 물체 또는 암석 및 광석 등의 잔류자기 및 유도자기 그리고 지형 등의 영향으로 결정된다. 어떤 지점에서의 지구자기장의 방향은 태양풍(Solar wind)과 전리층 사이의 상호작용 등의 외부자장(external field)의 영향도 받는다. 비쌍극자 자장(Non-dipole field)은 지표상에서 측정되는 총자기장에서 외핵에서 생성된 주된 자기장(Main field) 즉, 지구의 회전축에서 약 11.5도 기울어진 쌍극자 자장을 제거하고 남는 자기장을 말한다. 따라서 편각은 비쌍극자자장의 영향을 가장 많이 받는다. 비쌍극자 자장은 정지한 상태의 자장(standing field) 과 매년 서쪽으로 약 0.2도 움직이는 Westward drift하는 자장으로 크게 두 가지로 구분된다. 쌍극자 자장의 방향은 매우 느리게 변하지만 그 세기는 현재 비교적으로 빠르게 약해지고 있다. 비교적으로 매우 빠르게 변하는 비쌍극자 자장의 변화를 영년변화(Secular variation) 이라고 한다.

  • PDF

THERMAL PROPERTIES OF SMALL GRAINS WITH FLUCTUATING TEMPERATURE UNDER DIFFUSE INTERSTELLAR RADIATION FIELD

  • Hong, Seung-Soo
    • Journal of The Korean Astronomical Society
    • /
    • v.12 no.1
    • /
    • pp.27-34
    • /
    • 1979
  • Temperature history of very small interstellar dust particles is followed under diffuse interstellar radiation. Because of extremely small thermal capacities of these grains with sizes ranging from a few tens to hundred Angstroms in radii, they are to experience strong fluctuations in temperature whenever they are hit by interstellar ultraviolet photons. Fluctuating temperature can inhibit these smaller component of interstellar dust from growing into core-mantle particles of submicron sizes by continuously evaporating atoms and molecules adsorbed on their surface. This is interpreted as a possible physical reason for the bimodal nature in grain size distribution. A brief discussion is also given to the far infrared emission properties of such small grains in diffuse interstellar dust clouds.

  • PDF

Hydrochemistry and Origin of Noble Gases and $CO_2$ Gas Within Carbonated Mineral Waters in the Kyeoungbuk-Kangwon Province, Korea (경북-강원일대 탄산약수의 수질화학과 탄산 및 영족기체 기원)

  • Jeong, Chan-Ho;Yoo, Sang-Woo;Kim, Kyu-Han;Nagao, Keisuke
    • The Journal of Engineering Geology
    • /
    • v.21 no.1
    • /
    • pp.65-77
    • /
    • 2011
  • Hydrochemical and carbon isotopic (${\delta}^{13}C_{DIC}$) analyses of 11 water samples, and noble gas isotopic analyses of 8 water samples collected in the Kyeoungbuk and Kangwon areas of Korea were performed to determine their hydrochemical characteristics and to interpret the source of noble gases and $CO_2$ gas in the water. The carbonated mineral waters are weakly acidic (PH = 5.59-6.04), and electrical conductivity ranges from 302 to $864\;{\mu}S/cm$. The chemical composition of all the water samples is Ca-$HCO_3$ type. The high contents of Fe and Mn exceed the safe limits for drinking water. The ${\delta}^{13}C_{DIC}$ values of the samples range from -5.30‰ to -2.84‰, indicating that the carbon is supplied mainly from a deep-seated source and to a lesser degree from an inorganic carbonate source. The $^3He/^4He$ ratios of the samples range from $1.51{\times}10^{-6}$ to $6.45{\times}10^{-6}$. The samples plot into three groups on a $^3He/^4He$ versus $^4He/^{20}Ne$ diagram: the deep-seated field (e.g., a mantle source), the atmospheric field, and the air-mantle mixing field. A wide range of $^4He/^{20}Ne$ ratios is observed ($0.036{\times}10^{-6}$ to $1.76{\times}10^{-6}$), indicating that while radiogenic $^4He$ is dominant in these water samples, mantle-origin He is also present. The supply of $CO_2$ gas and noble gases from a deep-seated source to carbonated waters is inferred to be controlled by geological structures such as faults and geological boundaries.

A Geochemical Study of the Alkali Granite in the Kyeomyeongsan Formation (충주지역 계명산층 내에 산출하는 알카리 화강암의 지구화학적 연구)

  • Kim, Jin-Seop;Park, Meong-Eon;Kim, Gun-Soo
    • Economic and Environmental Geology
    • /
    • v.31 no.4
    • /
    • pp.349-360
    • /
    • 1998
  • The alkali granite occurred as small stock and dyke is distributed in the Kyeomyeongsan Formation in the vicinity of the Chungju city. Geochemical characteristics in major and trace element of alkali granite in the Kyeomyeongsan Formation indicate that the alkali granites are peralkaline and have similar geochemical features to the A-type alkali granite. The rock enriched in HFSE such as Zr, Nb, Y, REE etc. According to the discrimination diagram the alkali granites mostly belong to the within-plate granite field, and to the $A_1$ group of A-type granite. This suggests that they might be emplaced in a extentional rift environment. The alkali granites are characterized by remarkably high total REE content, and enriched, relatively flat to somewhat HREE-depleted patterns with large negative Eu anomaly. The Sm-Nd age of the alkali granite is $338{\pm}30Ma$ with ${\varepsilon}_{Nd(t)}$ beings -7.3 to -8.5. On the basis of the geochemical studies the source magma was derived from a enriched mantle-like source and had a few or clearly interaction with sialic continental crust. In conclusion, the alkali granitic rock of the Kyeomyeongsan Formation might be formed from the high F peralkaline magma that was emplaced in continental rift environment, and generated at the early Carboniferous.

  • PDF