• Title/Summary/Keyword: Mannoprotein

Search Result 5, Processing Time 0.021 seconds

Preparation and Analysis of Yeast Cell Wall Mannoproteins, Immune Enhancing Materials, from Cell Wall Mutant Saccharomyces cerevisiae

  • Ha Chang-Hoon;Yun Cheol-Won;Paik Hyun-Dong;Kim Seung-Wook;Kang Chang-Won;Hwang Han-Joon;Chang Hyo-Ihl
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.247-255
    • /
    • 2006
  • Yeast cell wall matrix particles are composed entirely of mannoprotein and ${\beta}-glucan$. The mannoproteins of yeast cell wall can systemically enhance the immune system. We previously purified and analyzed alkali-soluble ${\beta}-glucans$ [${\beta}$-(1,3)- and ${\beta}$-(1,6)-glucans] [10]. In the present study, a wild-type strain was first mutagenized with ultraviolet light, and the cell wall mutants were then selected by treatment with 1.0 mg/ml laminarinase (endo-${\beta}$-(1,3)-D-glucanase). Mannoproteins of Saccharomyces cerevisiae were released by laminarinase, purified by concanavalin-A affinity and ion-exchange chromatography. The results indicated that the mutants yielded 3-fold more mannoprotein than the wild-type. The mannoprotein mass of mutant K48L3 was 2.25 mg/100 mg of yeast cell dry mass. Carbohydrate analysis revealed that they contained mannose, glucose, and N-acetylglucosamine. Saccharomyces cerevisiae cell wall components, mannoproteins, are known to interact with macrophages through receptors, thereby inducing release of tumor necrosis factor alpha ($TNF-{\alpha}$) and nitric oxide. Mannoprotein tractions in the present study had a higher macrophage activity of secretion of $TNF-{\alpha}$ and nitric oxide and direct phagocytosis than positive control ($1{\mu}g$ of lipopolysaccharide). In particular, F1 and F3 fractions in mannoproteins of K48L3 enhanced and upregulated the activity of nitric oxide secretion and macrophage phagocytosis by approximately two- and four-fold, respectively.

Comparison of Cell Wall Ultrastructures of Aspergillus nidulans in Presence and Absence of a MnpAp Mannoprotein

  • Jeong, Hyo-Yong;Whang, Sung-Soo;Chae, Keon-Sang
    • Animal cells and systems
    • /
    • v.10 no.3
    • /
    • pp.131-135
    • /
    • 2006
  • The ultrastructure of Aspergillus nidulans cell wall in relation to a mannoprotein was studied by scanning and transmission electron microscopy. An mnpAp null-mutant, DMPV1, was used as a negative control of a wild type VER7. To analyze whether the mannoprotein in the cell wall during the development of an mnpAp null-mutant is present or not, immunogold microscopy was also adopted. The surface sculpturing of various cell types - hyphae, conidium, Hulle cell, and ascospore - were not very different between the wild type and the mnpAp-null mutant (DMPV1) as examined by scanning electron microscopy. These results were comparable to those examined by transmission electron microscopy, in that the hyphal cell wall was not indentical between two strains, probably caused by the MnpA protein (MnpAp). MnpAp was absent in both the hyphal cell wall of the DMPV1 strain and the conidial cell wall of a wide type, but clearly recognized in the hyphal cell wall of a wild type.

Comparative Study of Immune-Enhancing Activity of Crude and Mannoprotein-Free Yeast-Gluean Preparations

  • Kim, Hye-Nam;Lee, Jung-Nam;Kim, Gi-Eun;Ha-Lee, Young-Mie;Kim, Chan-Wha;Sohn, Jeong-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.826-831
    • /
    • 1999
  • ${\beta}-Glucan$, one of the major cell wall components of Saccharomyces cerevisiae, is known to enhance the immune function, especially by activating macrophages. Accordingly, in an effort to develop a safe and efficient immune stimulatory agent, we prepared crude ${\beta}-glucan$ (glucan-p1) and partially purified ${\beta}-glucan$ that was free of mannoproteins (glucan-p2), and evaluated their effect on both the macrophage function and resistance to E. coli-induced peritonitis. To investigate the function of the macrophages, phagocytosis, $TNF-{\alpha}$ secretion, oxygen burst, and the expression of cytokine genes such as $IFN-{\gamma}$ and IL-12 were analyzed. Glucan-p2 markedly stimulated the macrophages with all these parameters. Glucan-p1, however, did not stimulate phagocytosis, yet it induced $TNF-{\alpha}$ secretion, oxygen burst, and the expression of $IFN-{\gamma}$ and IL-12, although less efficiently than glucan-p2. Finally, to test the in vivo protective effect of {\beta}-glucan against infection, the survival of mice from E. coli-induced peritonitis was investigated. After 24 h of the peritoneal challenge of E. coli, all of the mice treated with glucan-p2 survived whereas none survived in the control group. Glucan-p1 showed only a marginal effect in protecting the mice. These results suggest that mannoprotein-free gluean-p2, but not gluean-p1, can serve as an effective immune-stimulating agent.

  • PDF

Immune-Enhancing Alkali-Soluble Glucans Produced by Wild-Type and Mutant Saccharomyces cerevisiae

  • Ha Chang-Hoon;Lim Ki-Hong;Jang Se-Hwan;Yun Cheol-Won;Paik Hyun-Dong;Kim Seung-Wook;Kang Chang-Won;Chang Hyo-Ihl
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.576-583
    • /
    • 2006
  • The alkali-soluble glucan of the yeast cell wall contains $\beta-(1,3)-$ and (1,6)-D-linkages and is known to systemically enhance the immune system. In the previous study [6], in order to isolate cell wall mutants, a wild-type strain was mutagenized by exposure to ultraviolet light, and the mutants were then selected via treatment with laminarinase $(endo-\beta-(1,3)-D-glucanase)$. The mass of alkali- and water-soluble glucans produced by the mutant was measured to be 33.8 mg/g of the dry mass of the yeast cell. Our results showed that the mutants generated the amount of alkali-soluble glucan 10-fold higher than that generated by the wild-type. Structural analysis showed that the alkali-soluble glucan from the mutants was associated with a higher degree of $\beta-(1,6)-D-linkage$ than was observed in conjunction with the wild-type. Yeast cell wall $\beta-glucan$ was shown to interact with macrophages via receptors, thereby inducing the release of tumor necrosis factor alpha $(TNF-\alpha)$ and nitric oxide. Alkali-soluble $\beta-glucans$, both from water-soluble and water-insoluble glucan, exhibited a higher degree of macrophage activity with regard to both the secretion of tumor necrosis factor alpha $(TNF-\alpha)$ and nitric oxide and direct phagocytosis, than did the positive control ($1{\mu}g$ of lipopolysaccharide).