• Title/Summary/Keyword: Manned-Unmanned Complex System

Search Result 12, Processing Time 0.023 seconds

Development Direction of Manned and Unmanned Complex Combat System to Respond to the Future Battlefield: Focusing on ICT (미래 전장 대응을 위한 유무인 복합전투체계 발전방향: ICT를 중심으로)

  • Bal Jeong;Kyungsook Lee;Bonjin Koo
    • Journal of Information Technology Applications and Management
    • /
    • v.31 no.4
    • /
    • pp.47-61
    • /
    • 2024
  • A manned and unmanned complex combat system refers to a combat system that performs various missions by operating manned and unmanned aircraft together. The combat system is rapidly becoming more advanced due to recent remarkable developments in information and communication technologies(ICT), including AI and 5G, and major countries are actively using it in actual battlefields. Furthermore, the importance of this combat system is increasing and it is emerging as the core of future warfare. Accordingly, this study analyzed the concept of the manned and unmanned complex combat system and the current status of its integration with ICT, presented an operational concept utilizing it, and then analyzed the actual current status of related combat systems at home and abroad. Lastly, five suggestions were presented for the development of domestic manned and unmanned complex combat systems.

A Study on the Combination of Manned-unmanned Teaming for Future Ground Combat Victory

  • Sung-Kwon Kim;Sang-Hyuk Park
    • International Journal of Advanced Culture Technology
    • /
    • v.11 no.1
    • /
    • pp.159-164
    • /
    • 2023
  • This study is for manned-unmanned teaming battles for future ground combat victories. The composition of the study is as follows. The introduction to Chapter 1 presents the necessity of this study from a macro perspective, Chapter 2, the review of the complex combat system for both manned and unmanned introduced the paradigm shift of the future battlefield and the cyber area that is superconnected to the network in future wars. Chapter 3 analyzed the combined combat system of manned-unmanned teaming in advanced military countries through the cases of the United States and Israel. In Chapter 4, after discussing the direction of the development of combat performance of the Korean Army, was concluded in Chapter 5. In other words, the purpose of this study is that as the concept of fighting artificial intelligence robots and military innovation changes, the method of performing battles must be changed in order for our military to win the battle.

Autonomous Collaboration Control for Manned-Unmanned Complex Systems and Its Compositions (유무인복합체계 구성 및 협업통제 자동화)

  • Hojoo Lee;Dohyun Kim;Wonik Park;Joonsung Choi
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.772-783
    • /
    • 2024
  • The emergence of MUCS(Manned-Unmanned Complex System), incorporating numerous robots surpassing human's control capabilities, is inevitable on future battlefields and necessitates revolutionary robot operation technology. Since MUCS should be structured over the current command and control networks in Korean military binding its constituent elements ranging from small echelons to joint forces, various types of MUCS configurations and manned-unmanned teaming(MUM-T) types are also defined. Then a methodology for robot collaboration with aiming at real-time situation response is proposed. The method is basing on the situational response decision-making model in order to operate multiple robots cooperatively in respond to serial events occurring in real-time using the concept of control measure which is the origin/object triggering a task. In addition, a set of decision-making rules is devised and compared to decisions optimized by the model. Through illustrative experiments the suggested method is checked to be viable for realizing MUM-T and operating multiple robots in MUCSs.

Modeling and Analysis of Cooperative Engagements with Manned-Unmanned Ground Combat Systems (무인 지상 전투 체계의 협동 교전 모델링 및 분석)

  • Han, Sang Woo;Pyun, Jai Jeong
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.2
    • /
    • pp.105-117
    • /
    • 2020
  • Analysis of combat effectiveness is required to consider the concept of tactical cooperative engagement between manned-unmanned weapon systems, in order to predict the required operational capabilities of future weapon systems that meets the concept of 'effect-based synchronized operations.' However, analytical methods such as mathematical and statistical models make it difficult to analyze the effects of complex systems under nonlinear warfare. In this paper, we propose a combat simulation model that can simulate the concept of cooperative engagement between manned-unmanned combat entities based on wireless communications. First, we model unmanned combat entities, e.g., unmanned ground vehicles and drones, and manned combat entities, e.g., combatants and artillery, considering the capabilities required by the future ground system. We also simulate tactical behavior in which all entities perform their mission while sharing battlefield situation information through wireless communications. Finally we explore the feasibility of the proposed model by analyzing combat effectiveness such as target acquisition rate, remote control success rate, reconnaissance lead time, survival rate, and enemy's loss rate under a small-unit armor reconnaissance scenario. The proposed model is expected to be used in war-game combat experiments as well as analysis of the effects of manned-unmanned ground weapons.

Simulation for SEAD Mission with MUM-T (SEAD 임무를 위한 유·무인 협업 모의)

  • Sungbeom Jo;Young Mee Choi;Jihyun Oh;Hyunsam Myung;Heungsik Lim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.409-421
    • /
    • 2023
  • In the air power, UAVs have played a large and diversified role in performing missions from simple to high-level complex ones. In particular, the suppression of enemy air defenses(SEAD) is very dangerous for a pilot so it is expected that the manned-unmanned teaming(MUM-T) system with tailless stealthy unmanned aerial vehicle(UAV) will greatly enhance effectiveness of the mission while ensuring the pilot safe. This paper describes simulation studies of remote airborne control(RAC) environment for performing the SEAD mission by MUM-T, by which the air force pilot remotely controls tailless UAVs individually or small UAVs in swarm. Through this simulation, air force pilot can derive the concept of MUM-T mission operation with various UAVs in the future, and it can be used to upgrade the MUM-T system by verifying the effectiveness of the mission.

Practical suggestions for development of 『manned & unmanned complex combat performance plan』 (drone operation) (『유·무인복합전투수행방안』 발전을 위한 현실적 제언(드론 운용))

  • Cheol-jung Kim;Bo-Ram, Kim;Min-Youn Kim;Jae-Seok Lim
    • Journal of Internet Computing and Services
    • /
    • v.25 no.1
    • /
    • pp.137-146
    • /
    • 2024
  • drones are used in a variety of fields, including business, leisure, lifesaving, and war. Various research using drones is being conducted in the military. In particular, the use of drones in 『Manned-Unmanned Complex combat performance plan』, powered by various unmanned vehicles deployed in the Army TIGER system, is expected to be a major factor realizing the Army's future combat performance that minimizes damage to ally combat troops while causing maximum damage to the enemy. As the deployment of various systems progresses, combat performance methods utilizing each system are evolving, but there is a lack of research to identify and resolve limitations in the perspective of unmanned vehicle operators. Based on the Ukrainian military's FPV drone combat case, we would like to make suggestions from the operator's perspective on overcoming perspective limitations through the introduction of FPV and the designation of military drone frequency.

Study on Development of Korean Unmanned Systems through Analysis of U.S. Unmanned Systems Policy (미국의 무인체계 정책 분석을 통한 한국의 무인체계 발전에 관한 연구)

  • Park, Dongseon;Oh, Kyungwon
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.3
    • /
    • pp.65-70
    • /
    • 2021
  • This study presents a method to efficiently advance the Republic of Korea's Unmanned Systems through the analysis of the development of the U.S. Unmanned System Policy. After the occurrence of the September 11 attacks, the U.S. developed Unmanned Systems as a part of RMA and became the leader in this area. The system went through numerous trials and errors during the development and acquisition. From these experiences, the U.S. had embodied Unmanned Systems acquisition methods by establishing Unmanned Systems Development Guidance and DoD Autonomy Community of Interest in 2012. In addition, as diverse unmanned programs started to proceed, it promoted Core Technology development sharing and simplification of functions of the Unmanned Systems to exclude budget-wasting elements such as duplication of programs. The Republic of Korea must politically build a collaborative system between industry/academia/research institute/military and apply evolutionary development strategies from the first step of the development of the Unmanned Systems the future Game Changer. In operations, concepts of the Manned/Unmanned Systems complex operation should be established and intelligent S/W, Open System, and Cyber Security technologies to materialize them developed.

An Empirical Study on the Next Generation Installation Device for Application to Multi-Mission Modular Weapon Systems (다중임무 모듈형 무기체계 적용 차세대 설치 장치 실증 연구)

  • Byeong-Jun An
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.757-761
    • /
    • 2024
  • The need to acquire a multi-mission modular ship to carry out the mosaic warfare of modern warfare is increasing. In such a modular ship, not only domestic R&D equipment/systems but also an manned/unmanned complex system purchased overseas must be mounted together. In order to successfully design/construction a multi-mission modular prototype battle ship and turn it into timely power, it is necessary to apply a new technology so that it can be installed flexibly in a limited space and time. However, the existing welding installation method not only limits flexibility in design/construction due to safety problems, but also has an inherent problem that the cost and time required to correct defects and supplements are excessive. Therefore, this study introduces the current status of next-generation installation devices developed/applied in the advanced navy and the field demonstration results applied to battle ships to provide flexibility in this respect.

A Study on the Development Trend of MUMT System of Military Advanced Countries (군사 선진국의 유·무인 복합체계 개발동향 연구)

  • Sang-Keun Cho;Eui-chul Shin;Jun-Woo Kim;In-Chan Kim;Ki-Won Kim;Sang-Hyuk Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.413-418
    • /
    • 2023
  • This study presents the direction of the Republic of Korea Army in the future by examining the Manned and Unmanned Teaming(MUMT) Systems of the Military Advanced Countries of the United States, Israel, and France. In this study, the current status of the U.S. Ground Forces' 'Squad-X' program, the Israeli Ground Forces' Digital Army Program (DAP), and the French Army's Scorpion program were examined. Next, it was followed by a discussion of The Combat concept, a way of fighting in the future battlefield, with the development trend of a complex Combat system with various weapon systems supporting it. Finally, based on this, the direction of the development of MUMT system, which the Republic of Korea Army should engage in in the future, was presented as a conclusion. Since such MUMT system of advanced military forces are being developed in a secret manner, continuous longitudinal research needs be conducted.

Development of System Integration Laboratory for the Verification of UAV Avionics System Requirements (무인기 항공전자시스템 요구도 검증을 위한 통합시험환경 개발)

  • Jo, Young-Wo;Kim, Bong-Gyu;Park, Jae-Sung;Lee, Jae-Uk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.5
    • /
    • pp.446-453
    • /
    • 2012
  • As part of the integration phases in developing a UAV, a System Integration Laboratory (SIL) has been developed to provide integrated test capability for the verification of avionics system requirements. The SIL has realized primary functions that are common in manned aircraft SIL's, and specialized laying stress on test data visualization and test automation under the closed-loop structure of the ground control simulation, aircraft simulation and flight simulation components. Those design results have led to easy and sure verification of lots of complex requirements of the UAV avionics system. The functions and performances of the SIL have been proved in four gradational test steps and checked to operate successfully in aircraft System Integration Test Environment for the integration of UAV ground station and aircraft.