• Title/Summary/Keyword: Manipur

Search Result 45, Processing Time 0.023 seconds

ASTRONOMY WITH SMALL TELESCOPES

  • SINGH, K. YUGINDRO;MEITEI, I. ABLU;SINGH, S. AJITKUMAR;SINGH, R.K. BASANTAKUMAR
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.741-743
    • /
    • 2015
  • We have designed and built three cost effective observatories, in distinct models, which can house Schmidt-Cassegrain type small telescopes having aperture sizes up to 16 inches. Using the available small telescopes, we provided the people of Manipura State in the far north-east corner of India the opportunity to observe directly with their own eyes the rare, spectacular events of the solar eclipse of January 15, 2010, lunar eclipse of December 10, 2011 and the transit of Venus of June 6, 2012. Apart from sharing a platform with the public for astronomy education and popularization through public outreach programs such as workshops, seminars and night watch programs, we have also developed a laboratory infrastructure and gained expertise in observational techniques based on photoelectric photometry, CCD imaging, CCD photometry and spectroscopy. Our team has become a partner in the ongoing international 'Orion project' headquartered in Phoenix, Arizona, USA which will be producing high quality photometric and spectroscopic data for five stars in the Orion constellation, namely Betelgeuse (alpha Orionis), Rigel (beta Orionis), Mintaka (delta Orionis), Alnilam (epsilon Orionis) and Alnitak (zeta Orionis). In the present paper, the authors would like to give a detailed report of their activities for the growth of astronomy in the state of Manipur, India.

SOME Lq INEQUALITIES FOR POLYNOMIAL

  • Chanam, Barchand;Reingachan, N.;Devi, Khangembam Babina;Devi, Maisnam Triveni;Krishnadas, Kshetrimayum
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.2
    • /
    • pp.331-345
    • /
    • 2021
  • Let p(z)be a polynomial of degree n. Then Bernstein's inequality [12,18] is $${\max\limits_{{\mid}z{\mid}=1}}\;{\mid}p^{\prime}(z){\mid}\;{\leq}\;n\;{\max_{{\mid}z{\mid}=1}{\mid}(z){\mid}}$$. For q > 0, we denote $${\parallel}p{\parallel}_q=\{{\frac{1}{2{\pi}}}{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_{0}}^{2{\pi}}}\;{\mid}p(e^{i{\theta}}){\mid}^qd{\theta}\}^{\frac{1}{q}}$$, and a well-known fact from analysis [17] gives $${{\lim_{q{\rightarrow}{{\infty}}}}\{{\frac{1}{2{\pi}}}{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_{0}}^{2{\pi}}}\;{\mid}p(e^{i{\theta}}){\mid}^qd{\theta}\}^{\frac{1}{q}}={\max\limits_{{\mid}z{\mid}=1}}\;{\mid}p(z){\mid}$$. Above Bernstein's inequality was extended by Zygmund [19] into Lq norm by proving ║p'║q ≤ n║p║q, q ≥ 1. Let p(z) = a0 + ∑n𝜈=𝜇 a𝜈z𝜈, 1 ≤ 𝜇 ≤ n, be a polynomial of degree n having no zero in |z| < k, k ≥ 1. Then for 0 < r ≤ R ≤ k, Aziz and Zargar [4] proved $${\max\limits_{{\mid}z{\mid}=R}}\;{\mid}p^{\prime}(z){\mid}\;{\leq}\;{\frac{nR^{{\mu}-1}(R^{\mu}+k^{\mu})^{{\frac{n}{\mu}}-1}}{(r^{\mu}+k^{\mu})^{\frac{n}{\mu}}}\;{\max\limits_{{\mid}z{\mid}=r}}\;{\mid}p(z){\mid}}$$. In this paper, we obtain the Lq version of the above inequality for q > 0. Further, we extend a result of Aziz and Shah [3] into Lq analogue for q > 0. Our results not only extend some known polynomial inequalities, but also reduce to some interesting results as particular cases.

Indium(III) Chloride Mediated Michael Addition of Indoles to Ketene S,S-Acetals: Synthesis of Bis- and Tris-indolylketones

  • Singh, Thokchom Prasanta;Khan, Ruhima;Noh, Young Ri;Lee, Sang-Gyeong;Singh, Okram Mukherjee
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.2950-2954
    • /
    • 2014
  • A series of bis and tris-indolylketones and meridianin alkaloids are prepared by one pot Michael reaction of indole and ketene S,S-acetals under solvent-free condition using mild Lewis acid $InCl_3$.

Facile Synthesis of 3-Thioxo-3H-benzo[f]chromen-2-yl methanone and 3H-Benzo[f]chromene-3-one Under Solvent Free Condition

  • Singh, Okram Mukherjee;Devi, Nepram Sushuma;Devi, Laishram Ronibala;Lim, Ki-Bum;Yoon, Yong-Jin;Lee, Sang-Geyong
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.175-178
    • /
    • 2011
  • A facile, convenient, efficient and high yielding synthesis of a combinatorial library of coumarins has been developed by the condensation of readily available $\beta$-oxodithioesters and S,S-acetal with 2-hydroxy-1-naphthaldehyde in the presence of catalytic amount of $CuCl_2$ under solvent free conditions.

Lr INEQUALITIES OF GENERALIZED TURÁN-TYPE INEQUALITIES OF POLYNOMIALS

  • Singh, Thangjam Birkramjit;Krishnadas, Kshetrimayum;Chanam, Barchand
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.4
    • /
    • pp.855-868
    • /
    • 2021
  • If p(z) is a polynomial of degree n having all its zeros in |z| ≤ k, k ≤ 1, then for 𝜌R ≥ k2 and 𝜌 ≤ R, Aziz and Zargar [4] proved that $${\max_{{\mid}z{\mid}=1}}{\mid}p^{\prime}(z){\mid}{\geq}n{\frac{(R+k)^{n-1}}{({\rho}+k)^n}}\{{\max_{{\mid}z{\mid}=1}}{\mid}p(z){\mid}+{\min_{{\mid}z{\mid}=k}}{\mid}p(z){\mid}\}$$. We prove a generalized Lr extension of the above result for a more general class of polynomials $p(z)=a_nz^n+\sum\limits_{{\nu}={\mu}}^{n}a_n-_{\nu}z^{n-\nu}$, $1{\leq}{\mu}{\leq}n$. We also obtain another Lr analogue of a result for the above general class of polynomials proved by Chanam and Dewan [6].

SOME INEQUALITIES ON POLAR DERIVATIVE OF A POLYNOMIAL

  • Devi, Khangembam Babina;Krishnadas, Kshetrimayum;Chanam, Barchand
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.1
    • /
    • pp.141-148
    • /
    • 2022
  • Let p(z) be a polynomial of degree n having no zero in |z| < k, k ≤ 1, then Govil proved $$\max_{{\mid}z{\mid}=1}{\mid}p^{\prime}(z){\mid}{\leq}{\frac{n}{1+k^n}}\max_{{\mid}z{\mid}=1}{\mid}p(z){\mid}$$, provided |p'(z)| and |q'(z)| attain their maximal at the same point on the circle |z| = 1, where $$q(z)=z^n{\overline{p(\frac{1}{\overline{z}})}}$$. In this paper, we extend the above inequality to polar derivative of a polynomial. Further, we also prove an improved version of above inequality into polar derivative.

NEW BEST PROXIMITY POINT RESULTS FOR DIFFERENT TYPES OF NONSELF PROXIMAL CONTRACTIONS WITH AN APPLICATION

  • Khairul Habib Alam;Yumnam Rohen;S. Surendra Singh;Kshetrimayum Mangijaobi Devi;L. Bishwakumar
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.2
    • /
    • pp.581-596
    • /
    • 2024
  • A new variety of non-self generalized proximal contraction, called Hardy-Rogers α+F-proximal contraction, is shown in this work. Also, with an example, we prove that such contractions satisfying some conditions must have a unique best proximity point. For some particular values of the constants, that we have used to generalize the proximal contraction, we conclude different α+F-proximal contraction results of the types Ćirić, Chatterjea, Reich, Kannan, and Banach with proof, that all such type of contractions must have unique best proximity point. We also apply our result to solve a functional equation.