• 제목/요약/키워드: Manipulators

검색결과 765건 처리시간 0.023초

Discrete-time learning control for robotic manipulators

  • Suzuki, Tatsuya;Yasue, Masanori;Okuma, Shigeru;Uchikawa, Yoshiki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.1069-1074
    • /
    • 1989
  • A discrete-time learning control for robotic manipulators is studied using its pulse transfer function. Firstly, discrete-time learning stability condition which is applicable to single-input two-outputs systems is derived. Secondly, stability of learning algorithm with position signal is studied. In this case, when sampling period is small, the algorithm is not stable because of an unstable zero of the system. Thirdly, stability of algorithm with position and velocity signals is studied. In this case, we can stabilize the learning control system which is unstable in learning with only position signal. Finally, simulation results on the trajectory control of robotic manipulators using the discrete-time learning control are shown. This simulation results agree well with the analytical ones.

  • PDF

가변 구조 제어 방식을 이용한 로보트 매니플레이터의 경로 이탈 특성 (Chracteristics of the path deviation of the robot manipulator using the variable structure control method)

  • 이홍규;이범희;최계근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.63-66
    • /
    • 1988
  • In the control of the robotic manipulators, the variable structure control method for the get Point Regualation has a advantage of the insensitivity about parameter variations and disturbances. When the robotic manipulators are controlled by a point-to-point scheme, no path constraint is considered. Thus, the variable structure control method will be effectively applied only if the trajectory of the robot hand is estimated precisely. In this paper, the joint trajectories in the joint space and the hand trajectory in the cartesian space are calculated by the variable structure control method, and an algorithm is suggested to elaborate the deviation error of the robot hand from a straight line path. The result of this study will become a base of the effective path planning about robotic manipulators with the variable structure control concept.

  • PDF

Configuration Space 접근법을 이용한 여유 자유도 로봇의 자기 충돌 회피 (Self-Collision Avoidance using Configuration Space Approach for Redundant Manipulators)

  • 문재성;정완균;염영일
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.321-324
    • /
    • 2003
  • There are two steps to solve the self-collision avoidance problems for redundant manipulators. First, all links are regarded as cylinders. and then the collisions should be checked among all pairs of the links. Between two cylinders. we can get the collision information derived from the concept or configuration space obstacle in real time. Therefore. it is possible to detect the links where collisions are likely in real time by setting the risk radius which is larger than actual radius. Second. the configuration control points (CCP) should be placed at the ends of the detected links. A cost function is the sum of the distances between the CCPs. To maximize the cost function means the links go far away each other without self-collisions.

  • PDF

Inverse Kinematic and Dynamic Analyses of 6-DOF PUS Type parallel Manipulators

  • Kim, Jong-Phil;Jeha Ryu
    • Journal of Mechanical Science and Technology
    • /
    • 제16권1호
    • /
    • pp.13-23
    • /
    • 2002
  • This paper presents inverse kinematic and dynamic analyses of HexaSlide type six degree-of-freedom parallel manipulators. The HexaSlide type parallel manipulators (HSM) can be characterized as an architecture with constant link lengths that are attached to moving sliders on the ground and to a mobile platform. In the inverse kinematic analyses, the slider and link motion (position, velocity, and acceleration) is computed given the desired mobile platform motion. Based on the inverse kinematic analysis, in order to compute the required actuator forces given the desired platform motion, inverse dynamic equations of motion of a parallel manipulator is derived by the Newton-Euler approach. In this derivation, the joint friction as well as all link inertia are included. Relative importance of the link inertia and joint frictions on the computed torque is investigated by computer simulations. It is expected that the inverse kinematic and dynamic equations can be used in the computed torque control and model-based adaptive control strategies.

직렬체인 다리를 갖는 평면 병렬형 기구의 강성해석 (Stiffness Analysis of Planar Parallel Manipulators with Serially Connected Legs)

  • 김한성
    • 한국생산제조학회지
    • /
    • 제23권2호
    • /
    • pp.164-172
    • /
    • 2014
  • This paper presents a method for analyzing the stiffness of full and low DOF (degree of freedom) planar parallel manipulators with serially connected legs. The individual stiffness of each leg is obtained by applying reciprocal screws to the leg twist using passive joints and elastic elements consisting of actuators and links. Because the legs are connected in parallel, the manipulator stiffness is determined by summing the individual leg stiffness values. This method does not require the assumption that springs should be located along reciprocal screws and is applicable to a planar parallel manipulator with a generic or singular configuration. The stiffness values of three planar parallel manipulators with different DOFs are analyzed. The numerical results are confirmed using ADAMS S/W.

Orthogonalization principle for hybrid control of robot arms under geometric constraint

  • Arimoto, Suguru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.1-6
    • /
    • 1992
  • A principle of "orthogonalization" is proposed as an extended notion of hybrid (force and position) control for robot manipulators under geometric endpoint constraints. The principle realizes the hybrid control in a strict sense by letting position and velocity feedback signals be orthogonal in joint space to the contact force vector whose components are exerted at corresponding joints. This orthogonalization is executed via a projection matrix computed in real-time from a gradient of the equation of the surface in joint coordinates and hence both projected position and velocity feedback signals become perpendicular to the force vector that is normal to the surface at the contact point in joint space. To show the important role of the principle in control of robot manipulators, three basic problems are analyzed, the first is a hybrid trajectory tracking problem by means of a "modified hybrid computed torque method", the second is a model-based adaptive control problem for robot manipulators under geometric endpoint constraints, and the third is an iterative learning control problem. It is shown that the passivity of residual error dynamics of robots follows from the orthogonalization principle and it plays a crucial role in convergence properties of both positional and force error signals.force error signals.

  • PDF

변형된 궤환형 신경회로망을 이용한 로봇 매니퓰레이터 적응 제어 방식 (Adaptive Control of Robot Manipulators using Modified Feedback Neural Network)

  • 정경권;이인재;이승현;김인;정성부;엄기환
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.1021-1024
    • /
    • 1999
  • In this paper, we propose a modified feedback neural network structure for adaptive control of robot manipulators. The proposed structure is that all of network output feedback into hidden units and output units. Learning algorithm is standard back-propagation algorithm. The simulation showed the effectiveness of using the new neural network structure in the adaptive control of robot manipulators.

  • PDF

폐루프 구조를 가지는 6 자유도 머니퓰레이터의 개발 및 기구학적 해석 (Development of 6 DOF Positioning Manipulator Using Closed Loop Structure and Its Kinematic Analysis)

  • 김경찬;우춘규;김수현;곽윤근
    • 한국정밀공학회지
    • /
    • 제15권1호
    • /
    • pp.60-68
    • /
    • 1998
  • Parallel link manipulators have an ability of more precise positioning than serial open-loop manipulators. However. general parallel link manipulators have been restricted to the real applications since they have limited workspace due to interference among actuators. In this study, we suggest a closed-loop manipulator with 6 degrees-of-freedom and with enlarged workspace. It consists of two parts for minimizing the interference among actuators. One part is lower structure with planar 3 degrees-of-freedom and the other is upper one with spatial 3 degrees-of-freedom. Forward kinematics and inverse kinematics are solved, research about singularity points are carried out and workspace is evaluated. The comparison of workspace between Stewart platform, which is the typical parallel link manipulator, and the suggested manipulator shows that the workspace of the latter is wider than that of the former. Especially, simulation results also show that the suggested manipulator is more suitable when there needs rotation in the end-effector.

  • PDF

불확실 로봇 매니퓰레이터의 견실 예측 제어기 설계 (Robust Predictive Control of Robot Manipulators with Uncertainties)

  • 김정관;한명철
    • 제어로봇시스템학회논문지
    • /
    • 제10권1호
    • /
    • pp.10-14
    • /
    • 2004
  • We present a predictive control algorithm combined with the robust robot control that is constructed on the Lyapunov min-max approach. Since the control design of a real manipulator system may often be made on the basis of the imperfect knowledge about the model, it is an important trend to design a robust control law that guarantees the desired properties of the manipulator under uncertain elements. In the preceding robust control work, we need to tune several control parameters in the admissible set where the desired stability can be achieved. By introducing an optimal predictive control technique in robust control we can find out much more deterministic controller for both the stability and the performance of manipulators. A new class of robust control combined with an optimal predictive control is constructed. We apply it to a simple type of 2-link robot manipulator and show that a desired performance can be achieved through the computer simulation.

Adaptive robust hybrid position/force control for a uncertain robot manipulator

  • Ha, In-Chul;Han, Myung-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.426-426
    • /
    • 2000
  • When real robot manipulators arc mathematically modeled, uncertainties are not avoidable. The uncertainties are often nonlinear and time varying, The uncertain factors come from imperfect knowledge of system parameters, payload change, friction, external disturbance and etc. We proposed a class of robust hybrid position/force control of manipulators and provided the stability analysis in the previous work. In the work, we propose a class of adaptive robust hybrid position/force control of manipulators with bound estimation and the stability based on Lyapunov function is presented. Especially, this controller does not need the information of uncertainty bound. The simulation results are provided to show the effectiveness of the algorithm.

  • PDF