• 제목/요약/키워드: Manipulators

검색결과 765건 처리시간 0.024초

비선형 상태궤환을 이용한 로보트 매니퓰레이터의 제어에 관한 연구 (A Study of Control for Robot Manipulator Using Nonlinear State Feedback)

  • 한상완;최현철;홍석교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.886-888
    • /
    • 1995
  • Models of industrial robot manipulators are characterized by highly nonlinear equation with coupling between the variables of motion. In this paper, a case study that illustrates the use or nonlinear state feedback to decouple the control of a two axis SCARA type robot manipulator is presented. This method is based on a suitable partition about the dynamic equation of industrial robots. The performance of this method is showed by the computer simulation.

  • PDF

FPGA-based ARX-Laguerre PIO fault diagnosis in robot manipulator

  • Piltan, Farzin;Kim, Jong-Myon
    • Advances in robotics research
    • /
    • 제2권1호
    • /
    • pp.99-112
    • /
    • 2018
  • The main contribution of this work is the design of a field programmable gate array (FPGA) based ARX-Laguerre proportional-integral observation (PIO) system for fault detection and identification (FDI) in a multi-input, multi-output (MIMO) nonlinear uncertain dynamical robot manipulators. An ARX-Laguerre method was used in this study to dynamic modeling the robot manipulator in the presence of uncertainty and disturbance. To address the challenges of robustness, fault detection, isolation, and estimation the proposed FPGA-based PI observer was applied to the ARX-Laguerre robot model. The effectiveness and accuracy of FPGA based ARX-Laguerre PIO was tested by first three degrees of the freedom PUMA robot manipulator, yielding 6.3%, 10.73%, and 4.23%, average performance improvement for three types of faults (e.g., actuator fault, sensor faults, and composite fault), respectively.

파라메터 변화에 강인한 Convolution 입력성형기 설계 (Design of Robust Convolution Input Shaper for Variation of Parameter)

  • 박운환;이재원;임병덕
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.127-133
    • /
    • 2001
  • The flexibility of long reach manipulators presents a difficult control problem when accurate end-point position is required. Input shaping by convolving system commands with impulse sequences has been shown to be an effective method of reducing residual vibrations in flexible systems. However, existing shapers has been considered robustness for only frequency uncertainty. However, this paper presents new multi-hump convolution(CV) input shaper that could accommodate with the simultaneous variation of natural frequency and damping ratio. Comparisons with previously proposed input shapers are presented to illustrate the qualities of the new input shaper. These new shapers will be shown to have better robustness for the variation of frequency and damping ratio.

  • PDF

디지털 신호 처리기 (TNS320C50)를 사용한 스카라 로봇의 적응제어에 관한연구 (A Study on an Adaptive Control for SCARA Robot Using Digital Signal Processor (TMS320C50))

  • 배길호
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 춘계학술대회 논문집
    • /
    • pp.114-118
    • /
    • 1996
  • This paper proposes a new technique to the design of adaptive control system using DSPs(TMS320C50) for Digital signal processors are used in implementing real time adaptive control algorithms to provide motion for robotic manipulators. In the proposed scheme, adaptation laws are derived from the improved second stability analysis based on the indirect adaptive control theory. The proposed control scheme is simple in structure, fast in computation. an suitable for implementation of real-time control. Moreover, this scheme does not requre an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by exeperimental reults for a SCARA robot.

  • PDF

병진운동을 하는 XYZ 마이크로 병렬형 머니퓰레이터의 기구학적 특성 분석 (Kinematic Analysis of the Characteristics of Translational XYZ Micro Parallel Manipulator)

  • 김은석;양현익
    • 대한기계학회논문집A
    • /
    • 제31권4호
    • /
    • pp.441-450
    • /
    • 2007
  • In this study, a 3-DOF XYZ micro parallel manipulator utilizing compliance mechanism is developed and analyzed. In so doing, a matrix method is used to rapidly solve displacements of the designed kinematic structure, and then kinematic characteristics of the developed manipulator are analyzed. Finally, the design analysis of the kinematic characteristics by changing hinge thickness and structure to improve workspace and translation motion is performed to show that the performance of the developed manipulator is relatively superior to the other similar kind of manipulators.

마이크로 부품 조립을 위한 평면 3 자유도 병렬 정렬기의 최적설계 (Design Optimization of Planar 3-DOF Parallel Manipulator for Alignment of Micro-Components)

  • 이정재;송준엽;이문구
    • 한국생산제조학회지
    • /
    • 제20권3호
    • /
    • pp.322-328
    • /
    • 2011
  • This paper presents inverse kinematics and workspace analysis of a planar three degree-of-freedom (DOF) parallel manipulator. Furthermore, optimization problem of the manipulator is presented. The manipulator adopts PRR (Prismatic-Revolute-Revolute) mechanism and the prismatic actuators are fixed to the base. This leads to a reduction of the inertia of the moving links and hence enables it to move with high speed. The actuators are linear electric motors. First, the mechanism based on the geometry of the manipulator is introduced. Second, a workspace analysis is performed. Finally, design optimization is carried out to have large workspace. The proposed approach can be applied to the design optimization of various three DOF parallel manipulators in order to maximize their workspace. The performance of mechanism is improved and satisfies the requirements of workspace to align micro-components.

구속 받는 3차원 유연 매니퓰레이터 선단의 마찰에 관한 연구 (A Study on End-effector Friction of Constrained Spatial Flexible Manipulator)

  • 김진수
    • 한국생산제조학회지
    • /
    • 제19권4호
    • /
    • pp.449-454
    • /
    • 2010
  • The force control of a constrained flexible manipulators has been one of the major research topics. However, a little effort has been devoted for the relation between friction force and elastic deflection of end-effector for a constrained flexible manipulator. So, the aim of this paper is to clarify the friction mechanism of a constrained spatial multi-link flexible manipulator by changing the material and connected method of end-effector. In this study, a concise hybrid position/force control scheme is applied to the control of a flexible manipulator, and the experimental results for the constrained vertical motion and constrained horizontal motion is presented. Finally a comparison between these results are presented to show the reduction of vibration of link and friction force.

단일마스터 멀티슬레이브형 텔레로보틱스 수술시스템 개발 (Development of Telerobotic Surgery System with Single-Master Multi-Slave)

  • 황길경;진태석;하시모토히데키
    • 제어로봇시스템학회논문지
    • /
    • 제12권9호
    • /
    • pp.918-925
    • /
    • 2006
  • Medical robotics and computer aided surgery in general, and robotic telesurgery in particular, are promising applications of robotics. In this paper, we shows a novel single-master (PHANTOM based single-master multi-slave telerobotic system) multi-slave system using two parallel mechanism micromanipulators as a slave device. After a general introduction to the systems structure and configuration of telerobotic system, a manipulation control strategy to build the system that human and both manipulators perform the cooperative manipulation, is introduced, followed by its kinematic analysis, mapping method, and experimental results.

외란 관측기에 의한 기구학적 여유자유도 매니퓰레이터의 강인한 임피던스 제어 (Robust Impedance Control of Kinematically Redundant Manipulator Based on Disturbance Observer)

  • 오용환;오상록;정완균
    • 제어로봇시스템학회논문지
    • /
    • 제8권11호
    • /
    • pp.963-969
    • /
    • 2002
  • Design method of a robust impedance control is proposed for the kinematically redundant manipulators. To achieve this objective, we first use the momentum feedback disturbance observer(MFDOB) scheme which can handle the nonlinear dynamics of a manipulator in Joint space. An extended task space formulation to describe the behaviors of task and null spaces of redundant manipulator is employed. Using the extended task space formulation and disturbance observer scheme, a robust impedance control method is designed. The performance of the proposed extended impedance controller is verified through experiments with a planar three links direct-drive manipulator.

빠른 학습 속도를 갖는 로보트 매니퓰레이터의 병렬 모듈 신경제어기 설계 (A Design of Parallel Module Neural Network for Robot Manipulators having a fast Learning Speed)

  • 김정도;이택종
    • 전자공학회논문지B
    • /
    • 제32B권9호
    • /
    • pp.1137-1153
    • /
    • 1995
  • It is not yet possible to solve the optimal number of neurons in hidden layer at neural networks. However, it has been proposed and proved by experiments that there is a limit in increasing the number of neuron in hidden layer, because too much incrememt will cause instability,local minima and large error. This paper proposes a module neural controller with pattern recognition ability to solve the above trade-off problems and to obtain fast learning convergence speed. The proposed neural controller is composed of several module having Multi-layer Perrceptron(MLP). Each module have the less neurons in hidden layer, because it learns only input patterns having a similar learning directions. Experiments with six joint robot manipulator have shown the effectiveness and the feasibility of the proposed the parallel module neural controller with pattern recognition perceptron.

  • PDF