• Title/Summary/Keyword: Manipulators

Search Result 765, Processing Time 0.026 seconds

A Study on the Design of the Graphic Simulator for a Robotic Workcell (로보틱 워크셀을 위한 그래픽 시뮬레이터의 구성에 관한 연구)

  • 이상무;이범희;고명삼
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.4
    • /
    • pp.414-427
    • /
    • 1990
  • This paper presents the development of the graphic simulator for an assembly workcell. The assembly workcell consists of two PUMA 560 manipulators, a conveyor belt system, a work table, and a vision sensor. In this study, the Petri Net theory is applied to model the assembly workcell and to construct the simulator. The event scheduling approach is used to simulate the cell. In order to show the graphic display of the simulation process, robot modelling, component modelling, and world modelling are included. The developed simulator is used to display the transition of the system state during the simulation. It is also used as a tool in selection the best resource states by studying the performance of the system as the resource states are changed.

  • PDF

Torque Optimizing Control of Redundant Manipulators (여유자유도 로봇을 위한 최적토크제어)

  • Lee, Bo-Hyun;Lee, Kee-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.758-760
    • /
    • 2000
  • 본 논문에서는 기구적으로 여유자유도를 갖는 로봇 매니퓰레이터 시스템을 대상으로 하여, 로봇 랜드가 주어진 제적을 추종할 수 있는 관절 토크를 유도하기 위한 동적제어 식을 새로이 구성하고, 동적제어식을 만족하는 관절 토크 해들 중에 국소적으로 토크의 크기를 최적화하는 해를 사용하는 최적토크제어를 제안한다. 최적토크를 구하는 문제에 있어 관절 토크에 가중치 행렬을 적용하여 각 관절 토크의 최대 크기의 비를 반영할 수 있도록 한다. 또한, 로봇 핸드 자코비안-관성 역행렬의 영공간에서 나타나는 영공간 관절 속도를 정의하고 이러한 영공간 관절속도가 최적토크제어에서는 로봇 시스템을 불안정하게 할 수 있다는 것을 보인다. 최적토크 제어의 이러한 문제를 해결하기 위하여 영공간 관절 속도를 제거하기 위한 소산토크를 유도하고, 최적토크제어식에 소산토크를 추가하는 방법을 제안한다. 평면형 3-자유도 로봇을 대상으로 한 모의실험을 통해 제안된 제어 방법의 우수성을 검증하고 그 결과를 분석한다.

  • PDF

Development of sub-assembly welding robot system in shipbuilding (선체 소조립 용접용 로봇 시스템 개발)

  • Gang, Seong-Won;Yun, Ho-Jung;Kim, Dong-Ho;Kim, Gang-Uk;Kim, Yeong-Ju;Cha, Ju-Yong;Lee, Sang-Beom;Lee, Jong-Geon;Gwon, Sun-Chang;Kim, Su-Ho
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.101-103
    • /
    • 2006
  • DSME has developed Sub-assembly Welding Robot System(SWRS) in order to increase the productivity of arc welding and to improve hazard and unclean environments in shipbuilding. DSME's SWRS includes a number of equipments such as four overhanging 6-axis articulated robot manipulators(10kg pay-load), gantry system, vision system detecting the workpiece automatically, and OLP system using the CAD data and a central control system integrating an anti-collision module. The SWRS was installed in CAS(Component Assembly Shop) of DSME's OKPO shipyard in August 2006, and now SWRS is running well in site.

  • PDF

Visral Control of Robotic Manipulators Based on Neural Network (시각정보에 의한 로보트 매니퓰레이터의 위치.자세 제어 - 신경회로망의 이용)

  • 심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1042-1046
    • /
    • 1993
  • This paper describes a control scheme for a robot manipulator system which uses visual information to position and orientate the end-effector. In this scheme, the position and orientation of the target workpiece with respect to the base frame of the robot are assumed to be unknown, but the desired relative position and orientation of the end-effector to the target workpiece are given in advance. The control scheme directly integrates visual data into the servoing process without subdividing the process into determination of the position and orientation of the workpiece and inverse kinematics calculation. A neural network system is used for determining the change in joint angles required in order to achieve the desired position and orientation. The proposed system can be control the robot so that it approach the desired position and orientation from arbitrary initial ones. Simulation for the robot manipulator with six degrees of freedom will be done. The validity and the effectiveness of the proposed control scheme will be verified by computer simulations.

  • PDF

A neural network based real-time robot tracking controller using position sensitive detectors (신경회로망과 위치 검출장치를 사용한 로보트 추적 제어기의 구현)

  • 박형권;오세영;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.660-665
    • /
    • 1993
  • Neural networks are used in the framework of sensorbased tracking control of robot manipulators. They learn by practice movements the relationship between PSD ( an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple backpropagation networks one of which is selected according to which division (corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very fast training and processing implementation required for real time control.

  • PDF

Characteristics of optimal solutions in kinematic resolutions of redundancy

  • Park, Jonghoon;Chung, W.K.;Youm, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.908-913
    • /
    • 1993
  • The inverse kinematic solutions for redundant manipulators using the optimality augmented resolution schemes have been used without investigating the characteristics of the optimal solutions. The questions with this kind of resolution methods are answered in this paper, that is (i) the characteristics of solutions, (ii) of algorithmic singularities, (iii) their dimensionality, and (iv) the invariance of the characteristics during resolutions. 3-DOF planar redundant robot is analyzed when the inverse kinematic method is applied with the manipulability as an example.

  • PDF

An improved robust and adaptive controller design for a robot manipulator (로보트 매니플레이터의 개선된 견실 및 적응제어기의 설계)

  • 최형식;김두형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.156-160
    • /
    • 1993
  • This paper presents a controller design to coordinate a robot manipulator under unknown system parameters and bounded disturbance inputs. To control the motion of the manipulator, an inverse dynamics control scheme is applied. Since parameters of the robot manipulators such as mass and inertia are not perfectly known, the difference between the actual and estimated parameters works as a disturbance force. To identify the unknown parameters, an inproved adaptive control algorithm is directly derived from a chosen Lyapunov's function candidate based on the Lyapunov's Second Method. A robust control algorithm is devised to counteract the bounded disturbance inputs such as contact forces and disturbing force coming from the difference between th actual and the estimated system parameters. Numerical examples are shown using three degree-of-freedom planar arm.

  • PDF

FUZZY SOGIC CONTROL FO DIRECT DRIVE ROBOT MANIPULATORS

  • Kang, Chul-Goo;Kwak, Hee-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.428-433
    • /
    • 1994
  • This investigates the feasibility of applying fuzzy ogic controllers to the motion tracking control of a direct drive robot manipulator to deal with highly nonlinear and time-varying dynamics associated with robot motion. A fuzzy logic controller with narrow shape of membership functions near zero and wide shape far away zero is analyzed. Simulation and experimental studies have been conducted for a 2 degree of freedom direct drive SCARA robot to evaluate control performances, Fuzzy logic controllers have shown control performances that are often better, or at least, as good as those of conventional PID controllers. Furthermore, the control performance of fuzzy logic controllers can be improved by selecting membership functions of narrow shapes near zero and wide shapes far away zero.

  • PDF

A stochastic model based tracking control scheme for flexible robot manipulators

  • Lee, Kumjung;Nam, kwanghee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.152-155
    • /
    • 1994
  • The presence of joint elasticity or the arm flexibility causes low damped oscillatory position error along a desired trajectory. We utilize a stochastic model for describing the fast dynamics and the approximation error. A second order shaping filter is synthesized such that its spectrum matches that of the fast dynamics. Augmenting the state vector of slow part with that of shaping filter, we obtain a nonlinear dynamics to which a Gaussian white noise is injected. This modeling approach leads us to the design of an extended Kalman filter(KEF) and a linear quadratic Gaussian(LQG) control scheme. We present the simulation results of this control method. The simulation results show us that our Kalman filtering approach is one of prospective methods in controlling the flexible arms.

  • PDF

VSC with three-segment nonlinear sliding mode for robot manipulator (로봇 매니퓰레이터를 위한 삼분 비선형 슬라이딩 모드를 가지는 가변구조 제어)

  • 최성훈;전경한;최봉열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.69-72
    • /
    • 1996
  • In this paper robust tracking control scheme using the new three-segment nonlinear sliding mode technique for nonlinear rigid robotic manipulator is developed. Sliding mode consists of three segments, the promotional acceleration segment, the constant velocity segment and the deceleration segment using terminal sliding mode. Strong robustness and fast error convergence can be obtained for rigid robotic manipulators with large uncertain dynamics by using the new three-segment nonlinear sliding mode technique together with a few useful structural properties of rigid robotic manipulator. The efficiency of the proposed method for the tracking has been demonstrated by simulations for two-link robot manipulator.

  • PDF