• 제목/요약/키워드: Manipulation detection

검색결과 93건 처리시간 0.031초

Detection of Political Manipulation through Unsupervised Learning

  • Lee, Sihyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권4호
    • /
    • pp.1825-1844
    • /
    • 2019
  • Political campaigns circulate manipulative opinions in online communities to implant false beliefs and eventually win elections. Not only is this type of manipulation unfair, it also has long-lasting negative impacts on people's lives. Existing tools detect political manipulation based on a supervised classifier, which is accurate when trained with large labeled data. However, preparing this data becomes an excessive burden and must be repeated often to reflect changing manipulation tactics. We propose a practical detection system that requires moderate groundwork to achieve a sufficient level of accuracy. The proposed system groups opinions with similar properties into clusters, and then labels a few opinions from each cluster to build a classifier. It also models each opinion with features deduced from raw data with no additional processing. To validate the system, we collected over a million opinions during three nation-wide campaigns in South Korea. The system reduced groundwork from 200K to nearly 200 labeling tasks, and correctly identified over 90% of manipulative opinions. The system also effectively identified transitions in manipulative tactics over time. We suggest that online communities perform periodic audits using the proposed system to highlight manipulative opinions and emerging tactics.

Cascaded-Hop For DeepFake Videos Detection

  • Zhang, Dengyong;Wu, Pengjie;Li, Feng;Zhu, Wenjie;Sheng, Victor S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권5호
    • /
    • pp.1671-1686
    • /
    • 2022
  • Face manipulation tools represented by Deepfake have threatened the security of people's biological identity information. Particularly, manipulation tools with deep learning technology have brought great challenges to Deepfake detection. There are many solutions for Deepfake detection based on traditional machine learning and advanced deep learning. However, those solutions of detectors almost have problems of poor performance when evaluated on different quality datasets. In this paper, for the sake of making high-quality Deepfake datasets, we provide a preprocessing method based on the image pixel matrix feature to eliminate similar images and the residual channel attention network (RCAN) to resize the scale of images. Significantly, we also describe a Deepfake detector named Cascaded-Hop which is based on the PixelHop++ system and the successive subspace learning (SSL) model. By feeding the preprocessed datasets, Cascaded-Hop achieves a good classification result on different manipulation types and multiple quality datasets. According to the experiment on FaceForensics++ and Celeb-DF, the AUC (area under curve) results of our proposed methods are comparable to the state-of-the-art models.

시계열 자료에서의 특이치 발견 (Outlier detection in time series data)

  • 최정인;엄인옥;조형준
    • 응용통계연구
    • /
    • 제29권5호
    • /
    • pp.907-920
    • /
    • 2016
  • 본 논문의 목표는 분위수 자기회귀모형을 활용하여 시계열 자료에서 특이치를 발견하는 알고리즘을 제안하고, 기존의 방법들과 그 성능을 비교하여 실제 주가 조작 사례에 적용해 보는 것이다. 지금까지의 특이치 발견 연구는 대부분 일반적인 데이터 형태에서만 있어왔기 때문에 시계열 데이터에서의 연구는 미미한 편이다. 또한 모수적인 방법에만 제한되었는데, 모수적 모형은 복잡할 뿐만 아니라 소요되는 분석 시간도 길기 때문에 편리하지 않다. 따라서 본 연구에서는 분위수 자기회귀모형을 활용한 특이치 발견 알고리즘을 새롭게 제시하고, 다양한 경우의 모의실험을 통해 기존 알고리즘과 비교하도록 한다. 특히 시계열 자료에서의 특이치 발견은 주가 조작을 적발하는 데에 유용하게 활용될 수 있다. 시간에 따라 관측되던 주가가 갑자기 그 동안의 흐름에서 벗어나 특이치로 발견되었다면 혹시 인위적인 개입으로 조작된 것은 아닌지 의심해 볼 수 있기 때문이다. 따라서 실제 주가 조작 사례에 적용해 봄으로써 얼마나 빠른 시일 내에 주가 조작을 적발해 낼 수 있는지 살펴보았다.

초점 실현과 운율 조작에 대한 음소지각 (The Effect of Focus Representation and Intonational Manipulation in Phoneme Detecting)

  • 김희성;신지영;김기호
    • 대한음성학회지:말소리
    • /
    • 제60호
    • /
    • pp.97-108
    • /
    • 2006
  • The purpose of this study is to observe how Korean listeners detect a target phoneme with 'Focus' represented by prosodic prominence and question-induced semantic emphasis, and with intonational manipulation. According to the automated phoneme detection task using E-Prime, the Korean listeners detected phoneme targets more rapidly when the target-bearing words were in prominence position and in question-induced position. However, the presence of question-induced semantic emphasis reduced the prominence effect, so two effects interacted: when question-induced emphasis were primarily given as a cue, prominence which was given as secondary cue affected less to fine the new information. Besides, the intonation with manipulation was responded to faster than without manipulation.

  • PDF

데이터마이닝기법을 이용한 주식시장의 이상매매 적출 (Detection of Stock Price Manipulation : A Data Mining Approach)

  • 홍정훈;안성만;위경우
    • 지능정보연구
    • /
    • 제12권4호
    • /
    • pp.15-37
    • /
    • 2006
  • 본 논문은 증권거래소 이상매매 적출업무의 효율성을 제고하기 위해 데이터마이닝 기법을 적용하는 방안에 대해 연구하는 것을 주된 목적으로 한다. 이 과정에서 국내 증권거래소의 이상매매 적출모형과 데이터마이닝을 활용한 해외사례로서 미국 NASD의 ADS를 소개한 뒤, 실증분석에 사용될 자료들을 시세조종 종목과 정상 종목으로 나누어 검토한다. 국내에서 주식시장의 이상매매 적출에 대한 데이터마이닝 기법의 적용에 대한 연구가 없는 상황에서 다양한 입력변수를 만들어 실제로 데이터마이닝 기법들을 적용하여 적출성과를 상호 비교한 결과와 시사점을 기술하였다.

  • PDF

트랜스포머 기반 판별 특징 학습 비전을 통한 얼굴 조작 감지 (Facial Manipulation Detection with Transformer-based Discriminative Features Learning Vision)

  • ;김민수;최필주;이석환;;권기룡
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.540-542
    • /
    • 2023
  • Due to the serious issues posed by facial manipulation technologies, many researchers are becoming increasingly interested in the identification of face forgeries. The majority of existing face forgery detection methods leverage powerful data adaptation ability of neural network to derive distinguishing traits. These deep learning-based detection methods frequently treat the detection of fake faces as a binary classification problem and employ softmax loss to track CNN network training. However, acquired traits observed by softmax loss are insufficient for discriminating. To get over these limitations, in this study, we introduce a novel discriminative feature learning based on Vision Transformer architecture. Additionally, a separation-center loss is created to simply compress intra-class variation of original faces while enhancing inter-class differences in the embedding space.

양안경합의 감각적 상충 경험에 기초한 시각적 변화탐지 경험에 대한 이해 (Understanding the Experience of Visual Change Detection Based on the Experience of a Sensory Conflict Evoked by a Binocular Rivalry)

  • 신영선;현주석
    • 감성과학
    • /
    • 제16권3호
    • /
    • pp.341-350
    • /
    • 2013
  • 본 연구는 시야에 발생하는 현저한 시각적 변화에 대한 탐지 경험과 양안경합이 초래한 감각적 상충에 대한 탐지 경험을 상호 비교함으로써 변화탐지 경험의 감각적 특성에 대한 이해를 시도하였다. 이를 위해, 실험 1에서는 2, 4, 6개의 항목을 단기파지 한 후 뒤이어 제시되는 검사항목과의 비교를 요구하는 변화탐지 과제가 사용되었다. 전체 변화탐지 시행 중 시각적 변화가 발생한 일부 시행에서는 검사항목 중 변화를 야기하는 한 항목에 양쪽 단안 분리 입력을 통해 서로 다른 항목이 제시되는 양안경합을 처치하였다. 실험 결과, 양안 경합이 처치되지 않은 경우 항목 개수 증가에 따른 변화탐지 정확도의 분명한 감소가 관찰된 반면 양안 경합이 처치된 경우 이러한 항목 개수 효과는 관찰되지 않았다. 실험 2에서는 항목 개수를 4, 8, 16개로 달리하는 탐색 배열 중 양안경합이 초래하는 감각적 상충을 보유한 표적 항목에 대한 탐색 효율성을 측정한 결과, 양안경합 처치 유무에 관계없이 탐색이 매우 효율적인 것이 관찰되었다. 실험 1과 2의 결과는 시야의 현저한 변화에 대한 탐지 경험은 기억부담의 증감에 따라 경우에 따라서는 양안경합 자극이 초래하는 감각적 상충에 대한 탐지 경험과 유사할 가능성을 시사한다.

  • PDF

이미지 조작 탐지를 위한 포렌식 방법론 (A Forensic Methodology for Detecting Image Manipulations)

  • 이지원;전승제;박윤지;정재현;정두원
    • 정보보호학회논문지
    • /
    • 제33권4호
    • /
    • pp.671-685
    • /
    • 2023
  • 인공지능이 이미지 편집 기술에 적용되어 조작 흔적이 거의 없는 고품질 이미지를 생성할 수 있게 되었다. 그러나 이러한 기술들은 거짓 정보 유포, 증거 인멸, 사실 부인 등의 범죄 행위에 악용될 수 있기 때문에 이에 대응하기 위한 방안이 필요하다. 본 연구에서는 이미지 조작을 탐지하기 위해 이미지 파일 분석과 모바일 포렌식 아티팩트 분석을 수행한다. 이미지 파일 분석은 조작된 이미지의 메타데이터를 파싱하여 Reference DB와 비교분석을 통해 조작여부를 탐지하는 방법이다. Reference DB는 이미지의 메타데이터에 남는 조작 관련 아티팩트를 수집하는 데이터베이스로서, 이미지 조작을 탐지하는 기준이 된다. 모바일 포렌식 아티팩트 분석은 이미지 편집 도구와관련된 패키지를 추출하고 분석하여 이미지 조작을 탐지하도록 한다. 본 연구에서 제안하는 방법론은 기존의 그래픽적 특징기반 분석의 한계를 보완하고, 이미지 처리 기법과 조합하여 오탐을 줄일 수 있도록 한다. 연구 결과는 이러한 방법론이 디지털 포렌식 조사 및 분석에 유의미하게 활용될 수 있음을 보여준다. 또한, 조작된 이미지 데이터셋과 함께 이미지 메타데이터 파싱 코드와 Reference DB를 제공하여 관련 연구에 기여하고자 한다.