• 제목/요약/키워드: Management School

검색결과 21,210건 처리시간 0.051초

호텔기업에 있어 구조조정상의 공정성 지각이 경영진의 신뢰, 직무만족 및 조직몰입에 미치는 영향 (The Impact of Justice of Layoff on Management Trust, Job Satisfaction and Organizational Commitment in the Hotel Corporations)

  • 김용순;안대희
    • 마케팅과학연구
    • /
    • 제18권1호
    • /
    • pp.115-139
    • /
    • 2008
  • IMF이후 경쟁의 심화와 적대적인 경영환경에 효과적으로 대응하고자 많은 호텔기업들이 구조조정을 실시해오고 있다. 이러한 구조조정은 인력감축을 동반하기 때문에 구조조정 과정에서 공정성을 지각하는데, 인력감축에서 살아남은 생존자들이 인력감축의 절차나 실무에서 불공정성을 지각할 때 상사에 대한 신뢰감이나 조직유효성을 감소시키는 것으로 나타났다. 따라서 본 연구는 호텔기업을 대상으로 구조조정 이후 살아남은 생존자를 대상으로 정리해고의 공정성 지각이 경영진의 신뢰, 직무만족 및 조직몰입에 어떠한 영향을 미치는지를 살펴보고자 하는 것이다. 이러한 연구목적을 달성하기 위해 실증분석을 실시한 결과 잔류종업원들은 구조조정 과정에서 절차 공정성 및 분배 공정성을 높게 지각 할수록 경영진에 대한 신뢰감과 조직 몰입이 높아지는 것으로 나타났다. 그러나 구조조정 과정에서 절차 공정성을 높게 지각할수록 직무만족은 높아지는 것으로 나타났지만, 분배 공정성은 직무만족과는 인과관계가 없는 것으로 나타났다. 또한 구조조정 과정에서의 경영진에 대한 신뢰감이 높아질수록 직무만족이나 조직몰입은 높아지는 것으로 나타났다.

  • PDF

새로운 결제서비스의 성공요인: 다중사례연구 (Critical Success Factor of Noble Payment System: Multiple Case Studies)

  • 박아름;이경전
    • 지능정보연구
    • /
    • 제20권4호
    • /
    • pp.59-87
    • /
    • 2014
  • 결제서비스에 대한 기존의 연구는 결제서비스의 채택요인 또는 지속적인 사용에 영향을 미치는 요인 등 행동이론을 중심으로 진행되어 왔다. 이러한 요인들이 미치는 영향에 대한 결과는 결제서비스의 종류에 따라 또는 연구 지역에 따라 상이하게 나타나고 있다. 본 연구는 결제 서비스의 종류나 문화등의 변수에 관계없이 새로운 결제 서비스가 성공할 수 있는 일반적인 요인이 무엇인지에 대한 의문에서 시작하게 되었다. 기존 연구에서 중요한 영향을 미친다고 제시한 채택요인들은 실제 결제사례의 결과에 비추어 보면 기존 연구에서 주장한 바와 일치하지 않는 경우를 볼 수 있다. 이러한 이론과 현실사이의 괴리를 발견하고 새로운 결제서비스가 성공하기 위한 근본적이고 결정적인 요인이 무엇인지에 대해 제시하고 사례연구를 통해 가설을 입증하고자 하는 것이 본 연구의 목적이다. 따라서 본 연구는 새로운 결제서비스가 성공하기 위해서는 기존 결제서비스의 비고객에게 이들이 결제할 수 있는 수단을 제공함으로써 새로운 결제 시장을 창출해야 함을 주장한다. 이를 위해 성공한 결제사례인 신용카드, 휴대폰 소액결제, PayPal, Square을 채택하였으며, 기존 결제서비스의 비고객을 3개의 계층으로 분류하여 분석하였다. 그리고 새로운 결제서비스가 어떠한 계층을 타겟으로 하였으며 이들에게 어떠한 결제수단을 제공하여 새로운 시장을 창출하였는지 제시한다. 사례 분석 결과, 성공 사례 모두 본 연구의 가설을 지지하는 것으로 나타났다. 따라서 새로운 결제서비스는 결국 기존의 결제수단으로 거래를 할 수 없었던 이들이 결제를 할 수 있도록 함으로써 성공할 수 있다는 가설을 입증하였다. 모바일 결제서비스가 아직 대중화되지 못한 원인을 본 가설에 비추어 분석해 보면 보면, 기존의 결제 인프라를 이용할 수 있는 바코드, QR코드 기반의 모바일 결제 서비스뿐만 아니라 NFC, BLE, 음파 등의 새로운 기술이 적용된 모바일 결제 서비스가 출시되는 등 새로운 시도가 계속되고 있다. 또한 모바일 월렛은 사용자들이 소지하고 있는 카드정보를 스마트폰에 저장하여 지갑 없이도 결제가 가능하며, 쿠폰 제공, 적립카드 관리, 신분증을 저장하는 등의 다양한 부가적인 기능을 제공하고 있어 성공할 것이라는 전망이 대두되고 있다. 하지만 이러한 서비스들은 본 연구 관점에서 보자면 기존 결제서비스의 비고객이(기존 결제수단을 이용할 수 없었던 사용자) 거래할 수 있는 새로운 결제 수단을 제공해 주지 못하고 있기 때문에 결국 초기사용자에게만 채택될 뿐 대중화되는데 한계가 있을 것으로 예상된다. 반면, 새로운 모바일 결제서비스의 성공사례 중 하나인 PaybyPhone은 기존 코인주차 결제서비스의 비고객인 현금 미소지 고객에게 스마트폰을 이용한 새로운 결제수단을 제공함으로써 새로운 주차 결제 시장을 창출하였으며 현재 미국뿐만 아니라 유럽시장까지 진출하는 등 급성장하고 있다. 결론적으로, 많은 이해관계자들이 모바일 결제시장을 선점하기 위해 다양한 형태의 모바일 결제 서비스를 출시하고 있지만 캐즘을 뛰어넘어 주류 시장에 성공적으로 정착할 수 있느냐는 결국 기존 결제서비스의 비고객군에게 그들이 필요로 하는 새로운 결제수단을 제공하는지의 여부에 달려있다고 볼 수 있다. 따라서 모바일 결제 서비스의 기획자나 매니저들은 서비스 기획 시 기존 결제서비스의 비고객군은 누구인가? 그들은 어떠한 결제수단을 원하는가?를 먼저 고려해야 한다. 본 연구는 새로운 결제서비스가 성공하는데 미치는 요인에 대한 가설을 검증하기 위해 4개의 성공사례를 선택하였으며 각 사례에 동일한 가설을 검증하는 '반복연구논리'를 적용하였다. 본 가설을 더욱 공고히 하기 위해 사례연구방법론에서 제시하고 있는 경쟁가설을 포함한 후속 사례연구가 진행되어야 할 것이다.

빅데이터 도입의도에 미치는 영향요인에 관한 연구: 전략적 가치인식과 TOE(Technology Organizational Environment) Framework을 중심으로 (An Empirical Study on the Influencing Factors for Big Data Intented Adoption: Focusing on the Strategic Value Recognition and TOE Framework)

  • 가회광;김진수
    • Asia pacific journal of information systems
    • /
    • 제24권4호
    • /
    • pp.443-472
    • /
    • 2014
  • To survive in the global competitive environment, enterprise should be able to solve various problems and find the optimal solution effectively. The big-data is being perceived as a tool for solving enterprise problems effectively and improve competitiveness with its' various problem solving and advanced predictive capabilities. Due to its remarkable performance, the implementation of big data systems has been increased through many enterprises around the world. Currently the big-data is called the 'crude oil' of the 21st century and is expected to provide competitive superiority. The reason why the big data is in the limelight is because while the conventional IT technology has been falling behind much in its possibility level, the big data has gone beyond the technological possibility and has the advantage of being utilized to create new values such as business optimization and new business creation through analysis of big data. Since the big data has been introduced too hastily without considering the strategic value deduction and achievement obtained through the big data, however, there are difficulties in the strategic value deduction and data utilization that can be gained through big data. According to the survey result of 1,800 IT professionals from 18 countries world wide, the percentage of the corporation where the big data is being utilized well was only 28%, and many of them responded that they are having difficulties in strategic value deduction and operation through big data. The strategic value should be deducted and environment phases like corporate internal and external related regulations and systems should be considered in order to introduce big data, but these factors were not well being reflected. The cause of the failure turned out to be that the big data was introduced by way of the IT trend and surrounding environment, but it was introduced hastily in the situation where the introduction condition was not well arranged. The strategic value which can be obtained through big data should be clearly comprehended and systematic environment analysis is very important about applicability in order to introduce successful big data, but since the corporations are considering only partial achievements and technological phases that can be obtained through big data, the successful introduction is not being made. Previous study shows that most of big data researches are focused on big data concept, cases, and practical suggestions without empirical study. The purpose of this study is provide the theoretically and practically useful implementation framework and strategies of big data systems with conducting comprehensive literature review, finding influencing factors for successful big data systems implementation, and analysing empirical models. To do this, the elements which can affect the introduction intention of big data were deducted by reviewing the information system's successful factors, strategic value perception factors, considering factors for the information system introduction environment and big data related literature in order to comprehend the effect factors when the corporations introduce big data and structured questionnaire was developed. After that, the questionnaire and the statistical analysis were performed with the people in charge of the big data inside the corporations as objects. According to the statistical analysis, it was shown that the strategic value perception factor and the inside-industry environmental factors affected positively the introduction intention of big data. The theoretical, practical and political implications deducted from the study result is as follows. The frist theoretical implication is that this study has proposed theoretically effect factors which affect the introduction intention of big data by reviewing the strategic value perception and environmental factors and big data related precedent studies and proposed the variables and measurement items which were analyzed empirically and verified. This study has meaning in that it has measured the influence of each variable on the introduction intention by verifying the relationship between the independent variables and the dependent variables through structural equation model. Second, this study has defined the independent variable(strategic value perception, environment), dependent variable(introduction intention) and regulatory variable(type of business and corporate size) about big data introduction intention and has arranged theoretical base in studying big data related field empirically afterwards by developing measurement items which has obtained credibility and validity. Third, by verifying the strategic value perception factors and the significance about environmental factors proposed in the conventional precedent studies, this study will be able to give aid to the afterwards empirical study about effect factors on big data introduction. The operational implications are as follows. First, this study has arranged the empirical study base about big data field by investigating the cause and effect relationship about the influence of the strategic value perception factor and environmental factor on the introduction intention and proposing the measurement items which has obtained the justice, credibility and validity etc. Second, this study has proposed the study result that the strategic value perception factor affects positively the big data introduction intention and it has meaning in that the importance of the strategic value perception has been presented. Third, the study has proposed that the corporation which introduces big data should consider the big data introduction through precise analysis about industry's internal environment. Fourth, this study has proposed the point that the size and type of business of the corresponding corporation should be considered in introducing the big data by presenting the difference of the effect factors of big data introduction depending on the size and type of business of the corporation. The political implications are as follows. First, variety of utilization of big data is needed. The strategic value that big data has can be accessed in various ways in the product, service field, productivity field, decision making field etc and can be utilized in all the business fields based on that, but the parts that main domestic corporations are considering are limited to some parts of the products and service fields. Accordingly, in introducing big data, reviewing the phase about utilization in detail and design the big data system in a form which can maximize the utilization rate will be necessary. Second, the study is proposing the burden of the cost of the system introduction, difficulty in utilization in the system and lack of credibility in the supply corporations etc in the big data introduction phase by corporations. Since the world IT corporations are predominating the big data market, the big data introduction of domestic corporations can not but to be dependent on the foreign corporations. When considering that fact, that our country does not have global IT corporations even though it is world powerful IT country, the big data can be thought to be the chance to rear world level corporations. Accordingly, the government shall need to rear star corporations through active political support. Third, the corporations' internal and external professional manpower for the big data introduction and operation lacks. Big data is a system where how valuable data can be deducted utilizing data is more important than the system construction itself. For this, talent who are equipped with academic knowledge and experience in various fields like IT, statistics, strategy and management etc and manpower training should be implemented through systematic education for these talents. This study has arranged theoretical base for empirical studies about big data related fields by comprehending the main variables which affect the big data introduction intention and verifying them and is expected to be able to propose useful guidelines for the corporations and policy developers who are considering big data implementationby analyzing empirically that theoretical base.

클라우드 컴퓨팅 서비스의 도입특성이 조직의 성과기대 및 사용의도에 미치는 영향에 관한 연구: 혁신확산 이론 관점 (A Study on the Effect of the Introduction Characteristics of Cloud Computing Services on the Performance Expectancy and the Intention to Use: From the Perspective of the Innovation Diffusion Theory)

  • 임재수;오재인
    • Asia pacific journal of information systems
    • /
    • 제22권3호
    • /
    • pp.99-124
    • /
    • 2012
  • Our society has long been talking about necessity for innovation. Since companies in particular need to carry out business innovation in their overall processes, they have attempted to apply many innovation factors on sites and become to pay more attention to their innovation. In order to achieve this goal, companies has applied various information technologies (IT) on sites as a means of innovation, and consequently IT have been greatly developed. It is natural for the field of IT to have faced another revolution which is called cloud computing, which is expected to result in innovative changes in software application via the Internet, data storing, the use of devices, and their operations. As a vehicle of innovation, cloud computing is expected to lead the changes and advancement of our society and the business world. Although many scholars have researched on a variety of topics regarding the innovation via IT, few studies have dealt with the issue of could computing as IT. Thus, the purpose of this paper is to set the variables of innovation attributes based on the previous articles as the characteristic variables and clarify how these variables affect "Performance Expectancy" of companies and the intention of using cloud computing. The result from the analysis of data collected in this study is as follows. The study utilized a research model developed on the innovation diffusion theory to identify influences on the adaptation and spreading IT for cloud computing services. Second, this study summarized the characteristics of cloud computing services as a new concept that introduces innovation at its early stage of adaptation for companies. Third, a theoretical model is provided that relates to the future innovation by suggesting variables for innovation characteristics to adopt cloud computing services. Finally, this study identified the factors affecting expectation and the intention to use the cloud computing service for the companies that consider adopting the cloud computing service. As the parameter and dependent variable respectively, the study deploys the independent variables that are aligned with the characteristics of the cloud computing services based on the innovation diffusion model, and utilizes the expectation for performance and Intention to Use based on the UTAUT theory. Independent variables for the research model include Relative Advantage, Complexity, Compatibility, Cost Saving, Trialability, and Observability. In addition, 'Acceptance for Adaptation' is applied as an adjustment variable to verify the influences on the expected performances from the cloud computing service. The validity of the research model was secured by performing factor analysis and reliability analysis. After confirmatory factor analysis is conducted using AMOS 7.0, the 20 hypotheses are verified through the analysis of the structural equation model, accepting 12 hypotheses among 20. For example, Relative Advantage turned out to have the positive effect both on Individual Performance and on Strategic Performance from the verification of hypothesis, while it showed meaningful correlation to affect Intention to Use directly. This indicates that many articles on the diffusion related Relative Advantage as the most important factor to predict the rate to accept innovation. From the viewpoint of the influence on Performance Expectancy among Compatibility and Cost Saving, Compatibility has the positive effect on both Individual Performance and on Strategic Performance, while it showed meaningful correlation with Intention to Use. However, the topic of the cloud computing service has become a strategic issue for adoption in companies, Cost Saving turns out to affect Individual Performance without a significant influence on Intention to Use. This indicates that companies expect practical performances such as time and cost saving and financial improvements through the adoption of the cloud computing service in the environment of the budget squeezing from the global economic crisis from 2008. Likewise, this positively affects the strategic performance in companies. In terms of effects, Trialability is proved to give no effects on Performance Expectancy. This indicates that the participants of the survey are willing to afford the risk from the high uncertainty caused by innovation, because they positively pursue information about new ideas as innovators and early adopter. In addition, they believe it is unnecessary to test the cloud computing service before the adoption, because there are various types of the cloud computing service. However, Observability positively affected both Individual Performance and Strategic Performance. It also showed meaningful correlation with Intention to Use. From the analysis of the direct effects on Intention to Use by innovative characteristics for the cloud computing service except the parameters, the innovative characteristics for the cloud computing service showed the positive influence on Relative Advantage, Compatibility and Observability while Complexity, Cost saving and the likelihood for the attempt did not affect Intention to Use. While the practical verification that was believed to be the most important factor on Performance Expectancy by characteristics for cloud computing service, Relative Advantage, Compatibility and Observability showed significant correlation with the various causes and effect analysis. Cost Saving showed a significant relation with Strategic Performance in companies, which indicates that the cost to build and operate IT is the burden of the management. Thus, the cloud computing service reflected the expectation as an alternative to reduce the investment and operational cost for IT infrastructure due to the recent economic crisis. The cloud computing service is not pervasive in the business world, but it is rapidly spreading all over the world, because of its inherited merits and benefits. Moreover, results of this research regarding the diffusion innovation are more or less different from those of the existing articles. This seems to be caused by the fact that the cloud computing service has a strong innovative factor that results in a new paradigm shift while most IT that are based on the theory of innovation diffusion are limited to companies and organizations. In addition, the participants in this study are believed to play an important role as innovators and early adapters to introduce the cloud computing service and to have competency to afford higher uncertainty for innovation. In conclusion, the introduction of the cloud computing service is a critical issue in the business world.

  • PDF

가상현실 웨어러블 기기의 구매 촉진을 위한 태도 자신감과 사용자 저항 태도: 가상현실 헤드기어를 중심으로 (Attitude Confidence and User Resistance for Purchasing Wearable Devices on Virtual Reality: Based on Virtual Reality Headgears)

  • 손봉진;박다슬;최재원
    • 지능정보연구
    • /
    • 제22권3호
    • /
    • pp.165-183
    • /
    • 2016
  • 스마트폰을 넘어 차세대 IT 비즈니스의 주목할 만한 후보군으로 가상현실이 이슈가 되고 있다. 가상현실은 컴퓨터와 VR헤드셋을 통해 구현한 입체적인 가상공간을 제공함으로써 사용자의 시각을 완전히 장악하고, 청각, 촉각 등 오감과의 상호작용 및 음성, 동작인식 등을 통해 가상공간을 마치 현실처럼 느끼게 한다는 점에서 향후 주목할 만한 산업 분야로 떠오르고 있다. 많은 글로벌 대기업들이 가상현실과 관련한 사업에 투자를 하고 있으나 소비자의 관점에서 가상현실 관련 제품군은 아직 쉽게 접하거나 구매하기 어려운 제품군으로 인식된다. 그렇기 때문에 소비자의 태도 변화가 큰 변화가 발생되고 있지 않으며 Acception & Diffusion 모델의 초기단계에 지나지 않아 구매로 연결되지 않는 실정이다. 본 연구는 기존 선행연구의 관점을 바탕으로 가상현실 헤드기어 제품들의 판매 촉진을 위한 사용자 관점에서의 사용자 저항을 매개 변수로 저항을 감소시키고 사용 및 구매의도에 영향을 주는 선행요인들을 도출하고자 하였으며 사용자가 가지고 있는 태도에 대한 자신감에 영향을 주어 행동 의도까지 변화시키는 현상에 대한 분석을 하고자 하였다. 본 연구의 결과는 태도 자신감에 대한 사용 용이성과 사용 혁신성의 영향력을 확인할 수 있었다. 마찬가지로 사용자 혁신저항에 영향력을 주는 변수로는 가격, 심미적 외관, 즐거움, 콘텐츠 및 화질 관련 변수들을 도출하였다. 결과적으로 본 연구는 태도 자신감의 가상현실 혁신 수용에 대한 영향력을 제시하고 가격 이외 변수인 콘텐츠의 양과 저항감의 관계성을 바탕으로 관련 변수들을 제시하였다. 특히 초기 시장인 가상현실 제품의 특성에 따라 브랜드에 대한 선점효과의 필요성과 콘텐츠의 부족함 등이 실무적으로 해결해야 할 과제로서 확인되었다.

비계획구매를 고려한 제조업체와 유통업체의 판매촉진 비용 분담 (Cooperative Sales Promotion in Manufacturer-Retailer Channel under Unplanned Buying Potential)

  • 김현식
    • 한국유통학회지:유통연구
    • /
    • 제17권4호
    • /
    • pp.29-53
    • /
    • 2012
  • 제조업체와 유통업체의 판매촉진 구사가 증가하면서 이들 사이의 바람직한 판매촉진 비용 분담 방식에 대한 관심도 증가하고 있다. 특히 유통업체 점포를 방문하는 소비자의 비계획구매 요소는 유통업체에게 명시적 잉여를 제공하지만 제조업체에게는 그렇지 않다는 점에서 이를 고려한 판매촉진 비용 분담의 방향 제시가 필요한 것이 현실이다. 문제는 유통업체 방문 소비자의 점포내 비계획구매 요소가 있을 때 제조업체가 어떻게 대응해야 하는지에 대해서는 충분한 설명이 이루어지지 못하고 있다는 점이다. 이러한 문제의식에서 본 연구에서는 유통업체 점포내 비계획구매 요소가 있을 때 제조업체가 구체적으로 공동 판매촉진 행동을 어떻게 전개해야 하는지 조명하고 있다. 본 연구의 주요결과는 다음과 같다: (1) 유통업체 점포 방문 소비자의 비계획구매 수준이 증가할수록 채널 전체의 판매촉진 수준은 높아지고, 제조업체의 비용 분담액도 커진다. (2) 유통업체 점포 방문 소비자의 비계획구매 수준이 증가할수록 채널 전체 판매촉진 비용 중에서 제조업체의 판매촉진 비용 분담 비중은 낮아지고, 유통업체의 판매촉진 비용 분담 비중은 높아진다. (3) 제조업체 이익은 유통업체 점포 방문 소비자의 비계획구매 수준인 b의 증가함수이다. (4) 유통업체가 소비자의 비계획구매 대상 제품을 조달하는데 소요되는 비용 수준이 증가할수록 유통업체 점포 방문 소비자의 비계획구매 수준 증가에 따른 채널 전체의 판매촉진 수준 증가 정도, 제조업체의 판매촉진 비용 분담액 증가 정도, 유통업체의 판매촉진 비용 분담 비중 증가 정도, 제조업체 이윤 증가 정도가 낮아진다.

  • PDF

유전자 알고리즘을 이용한 다분류 SVM의 최적화: 기업신용등급 예측에의 응용 (Optimization of Multiclass Support Vector Machine using Genetic Algorithm: Application to the Prediction of Corporate Credit Rating)

  • 안현철
    • 경영정보학연구
    • /
    • 제16권3호
    • /
    • pp.161-177
    • /
    • 2014
  • 기업신용등급은 금융시장의 신뢰를 구축하고 거래를 활성화하는데 있어 매우 중요한 요소로서, 오래 전부터 학계에서는 보다 정확한 기업신용등급 예측을 가능케 하는 다양한 모형들을 연구해 왔다. 구체적으로 다중판별분석(Multiple Discriminant Analysis, MDA)이나 다항 로지스틱 회귀분석(multinomial logistic regression analysis, MLOGIT)과 같은 통계기법을 비롯해, 인공신경망(Artificial Neural Networks, ANN), 사례기반추론(Case-based Reasoning, CBR), 그리고 다분류 문제해결을 위해 확장된 다분류 Support Vector Machines(Multiclass SVM)에 이르기까지 다양한 기법들이 학자들에 의해 적용되었는데, 최근의 연구결과들에 따르면 이 중에서도 다분류 SVM이 가장 우수한 예측성과를 보이고 있는 것으로 보고되고 있다. 본 연구에서는 이러한 다분류 SVM의 성능을 한 단계 더 개선하기 위한 대안으로 유전자 알고리즘(GA, Genetic Algorithm)을 활용한 최적화 모형을 제안한다. 구체적으로 본 연구의 제안모형은 유전자 알고리즘을 활용해 다분류 SVM에 적용되어야 할 최적의 커널 함수 파라미터값들과 최적의 입력변수 집합(feature subset)을 탐색하도록 설계되었다. 실제 데이터셋을 활용해 제안모형을 적용해 본 결과, MDA나 MLOGIT, CBR, ANN과 같은 기존 인공지능/데이터마이닝 기법들은 물론 지금까지 가장 우수한 예측성과를 보이는 것으로 알려져 있던 전통적인 다분류 SVM 보다도 제안모형이 더 우수한 예측성과를 보임을 확인할 수 있었다.

지속적 관여도 및 인지된 위험이 소비자의 온라인 상인선택 프로세스에 미치는 영향에 관한 연구: 요구신뢰 수준 개념을 중심으로 (How Enduring Product Involvement and Perceived Risk Affect Consumers' Online Merchant Selection Process: The 'Required Trust Level' Perspective)

  • 홍일유;이정민;조휘형
    • Asia pacific journal of information systems
    • /
    • 제22권1호
    • /
    • pp.29-52
    • /
    • 2012
  • Consumers differ in the way they make a purchase. An audio mania would willingly make a bold, yet serious, decision to buy a top-of-the-line home theater system, while he is not interested in replacing his two-decade-old shabby car. On the contrary, an automobile enthusiast wouldn't mind spending forty thousand dollars to buy a new Jaguar convertible, yet cares little about his junky component system. It is product involvement that helps us explain such differences among individuals in the purchase style. Product involvement refers to the extent to which a product is perceived to be important to a consumer (Zaichkowsky, 2001). Product involvement is an important factor that strongly influences consumer's purchase decision-making process, and thus has been of prime interest to consumer behavior researchers. Furthermore, researchers found that involvement is closely related to perceived risk (Dholakia, 2001). While abundant research exists addressing how product involvement relates to overall perceived risk, little attention has been paid to the relationship between involvement and different types of perceived risk in an electronic commerce setting. Given that perceived risk can be a substantial barrier to the online purchase (Jarvenpaa, 2000), research addressing such an issue will offer useful implications on what specific types of perceived risk an online firm should focus on mitigating if it is to increase sales to a fullest potential. Meanwhile, past research has focused on such consumer responses as information search and dissemination as a consequence of involvement, neglecting other behavioral responses like online merchant selection. For one example, will a consumer seriously considering the purchase of a pricey Guzzi bag perceive a great degree of risk associated with online buying and therefore choose to buy it from a digital storefront rather than from an online marketplace to mitigate risk? Will a consumer require greater trust on the part of the online merchant when the perceived risk of online buying is rather high? We intend to find answers to these research questions through an empirical study. This paper explores the impact of enduring product involvement and perceived risks on required trust level, and further on online merchant choice. For the purpose of the research, five types or components of perceived risk are taken into consideration, including financial, performance, delivery, psychological, and social risks. A research model has been built around the constructs under consideration, and 12 hypotheses have been developed based on the research model to examine the relationships between enduring involvement and five components of perceived risk, between five components of perceived risk and required trust level, between enduring involvement and required trust level, and finally between required trust level and preference toward an e-tailer. To attain our research objectives, we conducted an empirical analysis consisting of two phases of data collection: a pilot test and main survey. The pilot test was conducted using 25 college students to ensure that the questionnaire items are clear and straightforward. Then the main survey was conducted using 295 college students at a major university for nine days between December 13, 2010 and December 21, 2010. The measures employed to test the model included eight constructs: (1) enduring involvement, (2) financial risk, (3) performance risk, (4) delivery risk, (5) psychological risk, (6) social risk, (7) required trust level, (8) preference toward an e-tailer. The statistical package, SPSS 17.0, was used to test the internal consistency among the items within the individual measures. Based on the Cronbach's ${\alpha}$ coefficients of the individual measure, the reliability of all the variables is supported. Meanwhile, the Amos 18.0 package was employed to perform a confirmatory factor analysis designed to assess the unidimensionality of the measures. The goodness of fit for the measurement model was satisfied. Unidimensionality was tested using convergent, discriminant, and nomological validity. The statistical evidences proved that the three types of validity were all satisfied. Now the structured equation modeling technique was used to analyze the individual paths along the relationships among the research constructs. The results indicated that enduring involvement has significant positive relationships with all the five components of perceived risk, while only performance risk is significantly related to trust level required by consumers for purchase. It can be inferred from the findings that product performance problems are mostly likely to occur when a merchant behaves in an opportunistic manner. Positive relationships were also found between involvement and required trust level and between required trust level and online merchant choice. Enduring involvement is concerned with the pleasure a consumer derives from a product class and/or with the desire for knowledge for the product class, and thus is likely to motivate the consumer to look for ways of mitigating perceived risk by requiring a higher level of trust on the part of the online merchant. Likewise, a consumer requiring a high level of trust on the merchant will choose a digital storefront rather than an e-marketplace, since a digital storefront is believed to be trustworthier than an e-marketplace, as it fulfills orders by itself rather than acting as an intermediary. The findings of the present research provide both academic and practical implications. The first academic implication is that enduring product involvement is a strong motivator of consumer responses, especially the selection of a merchant, in the context of electronic shopping. Secondly, academicians are advised to pay attention to the finding that an individual component or type of perceived risk can be used as an important research construct, since it would allow one to pinpoint the specific types of risk that are influenced by antecedents or that influence consequents. Meanwhile, our research provides implications useful for online merchants (both online storefronts and e-marketplaces). Merchants may develop strategies to attract consumers by managing perceived performance risk involved in purchase decisions, since it was found to have significant positive relationship with the level of trust required by a consumer on the part of the merchant. One way to manage performance risk would be to thoroughly examine the product before shipping to ensure that it has no deficiencies or flaws. Secondly, digital storefronts are advised to focus on symbolic goods (e.g., cars, cell phones, fashion outfits, and handbags) in which consumers are relatively more involved than others, whereas e- marketplaces should put their emphasis on non-symbolic goods (e.g., drinks, books, MP3 players, and bike accessories).

  • PDF

폭소노미 사이트를 위한 랭킹 프레임워크 설계: 시맨틱 그래프기반 접근 (A Folksonomy Ranking Framework: A Semantic Graph-based Approach)

  • 박현정;노상규
    • Asia pacific journal of information systems
    • /
    • 제21권2호
    • /
    • pp.89-116
    • /
    • 2011
  • In collaborative tagging systems such as Delicious.com and Flickr.com, users assign keywords or tags to their uploaded resources, such as bookmarks and pictures, for their future use or sharing purposes. The collection of resources and tags generated by a user is called a personomy, and the collection of all personomies constitutes the folksonomy. The most significant need of the folksonomy users Is to efficiently find useful resources or experts on specific topics. An excellent ranking algorithm would assign higher ranking to more useful resources or experts. What resources are considered useful In a folksonomic system? Does a standard superior to frequency or freshness exist? The resource recommended by more users with mere expertise should be worthy of attention. This ranking paradigm can be implemented through a graph-based ranking algorithm. Two well-known representatives of such a paradigm are Page Rank by Google and HITS(Hypertext Induced Topic Selection) by Kleinberg. Both Page Rank and HITS assign a higher evaluation score to pages linked to more higher-scored pages. HITS differs from PageRank in that it utilizes two kinds of scores: authority and hub scores. The ranking objects of these pages are limited to Web pages, whereas the ranking objects of a folksonomic system are somewhat heterogeneous(i.e., users, resources, and tags). Therefore, uniform application of the voting notion of PageRank and HITS based on the links to a folksonomy would be unreasonable, In a folksonomic system, each link corresponding to a property can have an opposite direction, depending on whether the property is an active or a passive voice. The current research stems from the Idea that a graph-based ranking algorithm could be applied to the folksonomic system using the concept of mutual Interactions between entitles, rather than the voting notion of PageRank or HITS. The concept of mutual interactions, proposed for ranking the Semantic Web resources, enables the calculation of importance scores of various resources unaffected by link directions. The weights of a property representing the mutual interaction between classes are assigned depending on the relative significance of the property to the resource importance of each class. This class-oriented approach is based on the fact that, in the Semantic Web, there are many heterogeneous classes; thus, applying a different appraisal standard for each class is more reasonable. This is similar to the evaluation method of humans, where different items are assigned specific weights, which are then summed up to determine the weighted average. We can check for missing properties more easily with this approach than with other predicate-oriented approaches. A user of a tagging system usually assigns more than one tags to the same resource, and there can be more than one tags with the same subjectivity and objectivity. In the case that many users assign similar tags to the same resource, grading the users differently depending on the assignment order becomes necessary. This idea comes from the studies in psychology wherein expertise involves the ability to select the most relevant information for achieving a goal. An expert should be someone who not only has a large collection of documents annotated with a particular tag, but also tends to add documents of high quality to his/her collections. Such documents are identified by the number, as well as the expertise, of users who have the same documents in their collections. In other words, there is a relationship of mutual reinforcement between the expertise of a user and the quality of a document. In addition, there is a need to rank entities related more closely to a certain entity. Considering the property of social media that ensures the popularity of a topic is temporary, recent data should have more weight than old data. We propose a comprehensive folksonomy ranking framework in which all these considerations are dealt with and that can be easily customized to each folksonomy site for ranking purposes. To examine the validity of our ranking algorithm and show the mechanism of adjusting property, time, and expertise weights, we first use a dataset designed for analyzing the effect of each ranking factor independently. We then show the ranking results of a real folksonomy site, with the ranking factors combined. Because the ground truth of a given dataset is not known when it comes to ranking, we inject simulated data whose ranking results can be predicted into the real dataset and compare the ranking results of our algorithm with that of a previous HITS-based algorithm. Our semantic ranking algorithm based on the concept of mutual interaction seems to be preferable to the HITS-based algorithm as a flexible folksonomy ranking framework. Some concrete points of difference are as follows. First, with the time concept applied to the property weights, our algorithm shows superior performance in lowering the scores of older data and raising the scores of newer data. Second, applying the time concept to the expertise weights, as well as to the property weights, our algorithm controls the conflicting influence of expertise weights and enhances overall consistency of time-valued ranking. The expertise weights of the previous study can act as an obstacle to the time-valued ranking because the number of followers increases as time goes on. Third, many new properties and classes can be included in our framework. The previous HITS-based algorithm, based on the voting notion, loses ground in the situation where the domain consists of more than two classes, or where other important properties, such as "sent through twitter" or "registered as a friend," are added to the domain. Forth, there is a big difference in the calculation time and memory use between the two kinds of algorithms. While the matrix multiplication of two matrices, has to be executed twice for the previous HITS-based algorithm, this is unnecessary with our algorithm. In our ranking framework, various folksonomy ranking policies can be expressed with the ranking factors combined and our approach can work, even if the folksonomy site is not implemented with Semantic Web languages. Above all, the time weight proposed in this paper will be applicable to various domains, including social media, where time value is considered important.

공기업의 임원교체와 중도퇴임이 경영성과에 미치는 영향 (Performance of Korean State-owned Enterprises Following Executive Turnover and Executive Resignation During the Term of Office)

  • 유승원;김수희
    • KDI Journal of Economic Policy
    • /
    • 제34권3호
    • /
    • pp.95-131
    • /
    • 2012
  • 본 연구는 정부가 공기업으로 지정한 24개 기관의 2004년부터 2008년까지의 자료를 대상으로 공기업의 임원교체와 중도퇴임이 경영성과에 미치는 영향을 분석하였다. 경영성과의 대리변수로 총자산수익률의 변화 및 산업조정 총자산수익률의 변화를 사용하였다. 본 연구는 공기업의 공공성은 배제하고 기업성만을 대상으로 분석하였으며, 분석 결과 다음의 사항이 발견되었다. 첫째, 매년 평균 45.1%의 CEO가 교체되었으며, CEO의 평균 재임기간은 2년 3개월이었고 교체된 CEO 중 절반인 49.9%의 인사가 임기를 마치지 못하고 중도퇴임하였다. 감사의 경우 매년 평균 46.1%의 인사가 교체되었으며, 평균 재임기간은 2년 2개월이고, 교체 인사 중 중도퇴임한 인사는 51.0%였다. 비상임이사의 경우 매년 38.2%의 인사가 교체되었으며, 평균 재임기간은 2년 7개월이고, 교체 인사 중 25.4%가 중도퇴임하였다. CEO는 3년 임기를 마치지 못하고 중도퇴임한 사례가 많으며, 감사와 비상임이사의 경우 "공공기관의운영에관한법률"에 의해 임기가 3년에서 2년으로 줄어든(2007년 4월 이후 취임 인사부터 적용) 것을 감안하면 상당수 감사가 임기 도중 퇴임하였고, 비상임이사는 대체로 임기를 마친 것으로 여겨진다. 둘째, 전년도 경영성과 부진을 이유로 공기업 임원이 교체되거나 중도퇴임하는 통계적 증거를 찾지 못했다. 오히려 예상과 달리 비상임이사가 중도퇴임한 공기업의 전년도 경영성과가 그렇지 않은 공기업의 경영성과보다 통계적으로 유의하게 높은 현상이 발견되었다. 이는 "공공기관의운영에관한법률" 또는 과거 "정부투자기관관리기본법" 등에서 경영실적 부진 등을 사유로 해임하는 해임 관련 규정이 정상적으로 작동되지 않고, 정치적 동기 등 비경제적 요인에 의해 교체되고 있음을 의미한다. 셋째, 고정효과모형에 의한 분석 결과, 공기업 CEO와 비상임이사가 임기 종료 이전에 중도퇴임할 경우 경영성과에 부정적 영향을 미치는 증거가 발견되었다. CEO의 중도퇴임은 총자산수익률 변화에 유의한 부(-)의 영향을 미쳤고, 비상임이사의 경우 중도퇴임은 산업조정 총자산수익률 변화에 유의한 부(-)의 영향을 미쳤다. 넷째, 고(高)성장 더미변수를 추가하여 분석한 결과, 고성장 더미변수는 경영성과에 대체로 정(+)의 영향을 미침을 확인하였다. 그러나 고성장 공기업의 CEO가 교체되거나 중도퇴임하는 경우 고성장 더미변수의 효과는 상쇄되며 총자산수익률과 산업조정 총자산수익률 모두가 유의하게 감소하였다. 본 논문을 통해 공기업 경영실적평가 등 객관적이고 경제적인 기준에 의해 임원을 교체하지 않고, 임원의 법정 임기가 충실히 지켜지지 않아 경영성과에 부정적 영향을 미침을 알 수 있다.

  • PDF