• Title/Summary/Keyword: Mammalian expression

Search Result 481, Processing Time 0.023 seconds

Expression and Characterization of Human N-Acetylglucosaminyltransferases and ${\alpha}$2,3-Sialyltransferase in Insect Cells for In Vitro Glycosylation of Recombinant Erythropoietin

  • Kim, Na-Young;Kim, Hyung-Gu;Kim, Yang-Hyun;Chung, In-Sik;Yang, Jai-Myung
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.383-391
    • /
    • 2008
  • The glycans linked to the insect cell-derived glycoproteins are known to differ from those expressed in mammalian cells, partly because of the low level or lack of glycosyltransferase activities. GnT II, GnT IV, GnT V, and ST3Gal IV, which play important roles in the synthesis of tetraantennarytype complex glycan structures in mammalian cells, were overexpressed in Trichoplusia ni cells by using a baculovirus expression vector. The glycosyltransferases, expressed as a fusion form with the IgG-binding domain, were secreted into the culture media and purified using IgG sepharose resin. The enzyme assay, performed using a pyridylaminated-sugar chain as an acceptor, indicated that the purified glycosyltransferases retained their enzyme activities. Human erythropoietin expressed in T. ni cells (rhEPO) was subjected to in vitro glycosylation by using recombinant glycosyltransferases and was converted into complex-type glycan with terminal sialic acid. The presence of Nacetylglucosamine, galactose, and sialic acid on the rhEPO moiety was detected by a lectin blot analysis, and the addition of galactose and sialic acid to rhEPO was confirmed by autoradiography using $UDP-^{14}C-Gal\;and\;CMP-^{14}C-Sia$ as donors. The in vitro glycosylated rhEPO was injected into mice, and the number of reticulocytes among the ed blood cells was counted using FACS. A significant increase in the number of reticulocytes was not observed in the mice injected with in vitro glycosylated rhEPO as compared with those injected with rhEPO.

Molecular cloning and expression analysis of an interferon stimulated gene 15 from rock bream Oplegnathus fasciatus

  • Kim, Ju-Won;Kwon, Mun-Gyeong;Park, Myoung-Ae;Hwang, Jee-Youn;Park, Hyung-Jun;Baeck, Gun-Wook;Kim, Mu-Chan;Park, Chan-Il
    • Journal of fish pathology
    • /
    • v.23 no.2
    • /
    • pp.177-187
    • /
    • 2010
  • The Interferon stimulated gene 15 (ISG15) is strongly induced in many cell types by IFNs, viral infections, and double-stranded RNA (poly I:C). The ISG15 homologue cDNA was isolated from the rock bream LPS stimulated leukocyte cDNA library. The rock bream ISG15 homologue was found to consist of 833 bp encoding 157 amino acid residues. Compared with other known ISG15 peptide sequences, the most conserved regions of the rock bream ISG15 peptide were found to be the tandem ubiquitin-like domains and a C-terminal LRLRGG conjugating motif, characteristic of mammalian and non-mammalian ISG15 proteins. Phylogenetic analysis based on the deduced amino acid sequence revealed a homologous relationship between the ISG15 sequence of rock bream and that of Atlantic salmon, Atlantic cod, northern snake head, black rockfish and olive flounder. The expression of the rock bream ISG15 molecule was induced in the peripheral blood leukocytes (PBLs) from 1 to 24 h following poly I:C stimulation, with a peak at 3 h post-stimulation. The rock bream ISG15 gene was predominantly expressed in the PBLs, spleen and gill.

Glucosamine increases macrophage lipid accumulation by regulating the mammalian target of rapamycin signaling pathway

  • Sang-Min Kim;Dong Yeol Kim;Jiwon Park;Young-Ah Moon;Inn-Oc Han
    • BMB Reports
    • /
    • v.57 no.2
    • /
    • pp.92-97
    • /
    • 2024
  • Elevated blood glucose is associated with an increased risk of atherosclerosis. Data from the current study showed that glucosamine (GlcN), a normal glucose metabolite of the hexosamine biosynthetic pathway (HBP), promoted lipid accumulation in RAW264.7 macrophage cells. Oleic acid- and lipopolysaccharide (LPS)-induced lipid accumulation was further enhanced by GlcN in RAW264.7 cells, although there was no a significant change in the rate of fatty acid uptake. GlcN increased acetyl CoA carboxylase (ACC), fatty acid synthase (FAS), scavenger receptor class A, liver X receptor, and sterol regulatory element-binding protein-1c (SREBP-1c) mRNA expression, and; conversely, suppressed ATP-binding cassette transporter A1 (ABCA-1) and ABCG-1 expression. Additionally, GlcN promoted O-GlcNAcylation of nuclear SREBP-1 but did not affect its DNA binding activity. GlcN stimulated phosphorylation of mammalian target of rapamycin (mTOR) and S6 kinase. Rapamycin, a mTOR-specific inhibitor, suppressed GlcN-induced lipid accumulation in RAW264.7 cells. The GlcN-mediated increase in ACC and FAS mRNA was suppressed, while the decrease in ABCA-1 and ABCG-1 by GlcN was not significantly altered by rapamycin. Together, our results highlight the importance of the mTOR signaling pathway in GlcN-induced macrophage lipid accumulation and further support a potential link between mTOR and HBP signaling in lipogenesis.

Mammalian Sialyltransferase Superfamily : Structure and Function

  • Lee, Young-Choon
    • Proceedings of the Korean Society of Life Science Conference
    • /
    • 2002.12a
    • /
    • pp.13-19
    • /
    • 2002
  • To elucidate the regulatory mechanism for expression of sialyl-glycoconjugates and their biological functions, ninetheen sialyltransferase cDNAs including eleven by our group or co-works have been cloned and characterized so far. The cloned sialyltransferases are classified into four families according to the carbohydrate linkages they synthesize: ${\alpha}2,3-sialyltransferase$ (ST3Gal I-VI), ${\alpha}$ 2,6-sialyltransferase (ST6Gal I), GalNAc ${\alpha}$ 2,6-sialyltransferase (ST6GalNAc I-VI), and ${\alpha}2,8-sialyltransferase$ (ST8Sia I-VI). Each of the sialyltransferase genes is differentially expressed in a tissue-, cell type-, and stage-specific manner. These enzymes differ in their substrate specificity and various biochemical parameters. However, enzymatic analysis conducted in vitro with recombinant enzyme revealed that one linkage can be synthesized by multiple enzymes. We present here an overview of structure and function of sialyltransferases performed by our group and co-works. Genomic structures and transcriptional regulation of two kinds of human sialyltransferase gene are also presented.

  • PDF

Correlation Between Enhancing Effect of Sodium Butyrate on Specific Productivity and mRNA Transcription Level in Recombinant Chinese Hamster Ovary Cells Producing Antibody

  • Jeon, Min-Kyoung;Lee, Gyun-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1036-1040
    • /
    • 2007
  • Sodium butyrate (NaBu) has been used to enhance protein expression levels in mammalian cell culture. To determine the clonal variability of recombinant Chinese hamster ovary (rCHO) cells in response to NaBu addition regarding specific antibody productivity $(q_{Ab})$, three rCHO clones were subjected to different concentrations of NaBu. For all three clones, NaBu addition inhibited cell growth and decreased cell viability in a dose-dependent manner. On the other hand, the enhancing effect of NaBu on $q_{Ab}$ varied significantly among the clones. NaBu addition enhanced the antibody production of only one clone. RT-PCR analysis revealed that the changes in $q_{Ab}$ correlated linearly with those of the mRNA transcription level. Thus, it was concluded that the different enhancing effects of NaBu on protein expression in rCHO cell clones resulted from their different mRNA transcription levels.

Interference of EGFP RNA in Human NT-2/D1 Cell Lines Using Human U6 Promoter-based siRNA PCR Products

  • Kwak, Young-Don;Sugaya, Kiminobu
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.273-276
    • /
    • 2006
  • RNA interference (RNAi), a process of sequence-specific gene suppression, has been known as a natural gene regulatory mechanism in a wide range of lower organisms. Recently, we have reported that a transfection of human U6 promoter (hU6) driven hairpin small-interference RNA (siRNA) plasmid specifically knocks down the target gene by post-transcriptional gene silencing in mammalian cells. Here we report that transfection of polymerase chain reaction (PCR) products, containing human U6 promoter with hairpin siRNA, knocks down the target gene expression in human teratocarcinoma NT-2/D1 cells. Moreover, we showed 3' end termination sequence, 5 Ts, is not critical elements for knocking down in PCR-based siRNA system. Therefore, the PCR-based siRNA system is a promising tool not only for the screening but also to temporally regulate gene expression in the human progenitor cells.

Effects of Soy-isoflavonoid on Molecular Markers Related to Apoptosis in Mature and Ovariectomized Female Rats, and Mammalian Tumor Cell Lines

  • Shin, Jang-In;Lee, Mee-Sook;Park, Ock-Jin
    • Food Science and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.709-714
    • /
    • 2005
  • Alteration of molecular markers related to apoptosis of in vivo normal system and in vitro cancerous system by soy-isoflavonoid with estrogen was investigated. Down-regulation of Bcl-2 was accompanied by decreased expression of COX-2 (cyclooxygenase-2) in mature female rats treated with soy-isoflavonoid and estrogen. In ovariectomized rat system, Bax was regulated by higher concentration of soy treatment. Bax up-regulation by soy-isoflavonoid genistein treatment was observed in MCF-7 mammary cancer cell system. Estrogen without soy induced similar pattern of Bax expression as soy-isoflavonoid in vivo, but exhibited opposite trend in vitro. These findings suggest soy-isoflavonoid may have potential to induce apoptosis at higher concentrations through up-regulation of Bax or down-regulation of Bcl-2 expressions depending on normal or cancerous state, and physiological status of rats.

A concise review of human brain methylome during aging and neurodegenerative diseases

  • Prasad, Renuka;Jho, Eek-hoon
    • BMB Reports
    • /
    • v.52 no.10
    • /
    • pp.577-588
    • /
    • 2019
  • DNA methylation at CpG sites is an essential epigenetic mark that regulates gene expression during mammalian development and diseases. Methylome refers to the entire set of methylation modifications present in the whole genome. Over the last several years, an increasing number of reports on brain DNA methylome reported the association between aberrant methylation and the abnormalities in the expression of critical genes known to have critical roles during aging and neurodegenerative diseases. Consequently, the role of methylation in understanding neurodegenerative diseases has been under focus. This review outlines the current knowledge of the human brain DNA methylomes during aging and neurodegenerative diseases. We describe the differentially methylated genes from fetal stage to old age and their biological functions. Additionally, we summarize the key aspects and methylated genes identified from brain methylome studies on neurodegenerative diseases. The brain methylome studies could provide a basis for studying the functional aspects of neurodegenerative diseases.

Expression of Bradykinin Binding Sites within the Mammalian Kidney Tissues (신장 조직의 브라디키닌 결합부위 발현)

  • Chung, Sung-Hyun;Jung, Jee-Chang
    • YAKHAK HOEJI
    • /
    • v.38 no.5
    • /
    • pp.602-607
    • /
    • 1994
  • Based upon the previous experiments showing that kidney and lung tissues of rat had relatively abundant bradykinin binding sites, we tried to characterize and determine the densities of the bradykinin binding sites in the rabbit kidney tissue and proximal tubular cells under different growing conditions. Among the kidney tissue renal medulla segments showed the highest bradykinin binding sites. To determine which growth factors are to add in the serum free culture medium to express selectively the bradykinin binding sites in the rabbit kidney proximal tubular cells, we tried so called hormone-deletion approach and in here insulin, hydrocortisone, transferrin, triiodothyronine and prostaglandin $E_1$ are examined. By performing receptor binding assay and determination of protein concentrations, we may conclude that the most required hormones in the expression for bradykinin binding sites are insulin and transferrin, and fetal bovine serum is shown to be less effective in this regard.

  • PDF

Molecular Cloning of a Defensin Homologue Gene of a Novel Family Member from the Firefly, Pyrocoelia rufa

  • Lee, Kwang-Sik;Park, Hye-Jin;Kim, Seong-Ryul;Lee, Sang-Mong;Sohn, Hung-Dae;Jin, Byung-Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.3 no.1
    • /
    • pp.57-62
    • /
    • 2001
  • A cDNA encoding the defensin homologue of a novel family member was isolated from the cDNA library of the firefly,Pyrocoelia rufa. Sequence analysis of the cDNA encoding the defensin homologue of P. rufa resulted that the 165 bp cDHA has an open reading frame of 55 amino acid residues. The deduced amino acid sequences of the defensin homologue gene from P. rufa showed identity to known mammalian defensins. Also 6 cystein residues in the P. rufa defensin homologue gene were conserved in the same position as those of known mammalian defensins. The result suggested that P. rufa defensin homologue is a novel member of the insect defensin family. Southern blot analysis suggests that there may be a single copy number of the P.rufa defensin homologue gene and their fat body-specific expression pattern at the transcriptional level was confirmed by Northern blot analysis.

  • PDF