• Title/Summary/Keyword: Mammalian cell

Search Result 734, Processing Time 0.027 seconds

High-level production and initial crystallization of a Fe65 PTB domain (Fe65단백질의 한 PTB 도메인에 대한 과발현 및 초기 결정화)

  • Ro, Seung-Hyun;Ha, Nam-Chul
    • Journal of Life Science
    • /
    • v.17 no.1 s.81
    • /
    • pp.18-23
    • /
    • 2007
  • Fe65, a neuron-specific adaptor protein, has two phosphotyrosine binding (PTB) domains. The second PTB (PTB2) domain interacts with intracellular domain fragment (AICD) of amyloid beta precursor protein (APP). Recent studies suggested that tile complex is composed of AICD and Fe65 transactivates genes that are responsible for neuronal cell death in Alzheimer's disease (AD). Therefore, a compound inhibiting the interaction between Fe65 and AICD can be a drug candidate to treat AD. However, it remains unclear how Fe65 recognizes AICD at a molecular level. Here, we report high-level production of the PTB2 domain of Fe65 in the baculovirus system. We found that the baculovirus system is an efficient method to obtain the Fe65 PTB2 domain, compared with the bacterial and mammalian expression systems. The purified recombinant protein was used for crystallization to determine its crystal structure helping to understand the molecular mechanism of Fe65-dependent signaling and to design its inhibitors.

PCNA Modifications for Regulation of Post-Replication Repair Pathways

  • Lee, Kyoo-young;Myung, Kyungjae
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.5-11
    • /
    • 2008
  • Stalled DNA replication forks activate specific DNA repair mechanism called post-replication repair (PRR) pathways that simply bypass DNA damage. The bypassing of DNA damage by PRR prevents prolonged stalling of DNA replication that could result in double strand breaks (DSBs). Proliferating cell nuclear antigen (PCNA) functions to initiate and choose different bypassing pathways of PRR. In yeast, DNA replication forks stalled by DNA damage induces monoubiquitination of PCNA at K164, which is catalyzed by Rad6/Rad18 complex. PCNA monoubiquitination triggers the replacement of replicative polymerase with special translesion synthesis (TLS) polymerases that are able to replicate past DNA lesions. The PCNA interaction motif and/or the ubiquitin binding motif in most TLS polymerases seem to be important for the regulation of TLS. The TLS pathway is usually error-prone because TLS polymerases have low fidelity and no proofreading activity. PCNA can also be further polyubiquitinated by Ubc13/ Mms2/Rad5 complex, which adds an ubiquitin chain onto monoubiquitinated K164 of PCNA. PCNA polyubiquitination directs a different PRR pathway known as error-free damage avoidance, which uses the newly synthesized sister chromatid as a template to bypass DNA damage presumably through template switching mechanism. Mammalian homologues of all of the yeast PRR proteins have been identified, thus PRR is well conserved throughout evolution. Mutations of some PRR genes are associated with a higher risk for cancers in mice and human patients, strongly supporting the importance of PRR as a tumor suppressor pathway.

In vitro Mammalian Chromosomal Aberration Test of Fullerene-C60 (Fullerene-C60의 포유류 배양세포를 이용한 염색체이상시험)

  • Kim, Soo-Jin;Rim, Kyung-Taek;Cho, Hae-Won;Han, Jeong-Hee;Kim, Hyeon-Yeong;Yang, Jeong-Sun
    • Environmental Analysis Health and Toxicology
    • /
    • v.24 no.1
    • /
    • pp.43-52
    • /
    • 2009
  • Fullerene의 유전독성을 평가하기 위하여 Chinese hamster유래의 난소유아세포(CHO-K1 cell)를 이용하여 직접법(-S9)과 대사활성화법(+S9 mix)의 염색체이상시험을 실시하였다. 시험물질은 1% CMC 나트륨염의 현탁액(1% CMC 용액)에 희석하여 조제하였다. 대사활성화를 시키지 않은 직접법의 염색체이상시험에서 24시간 투여군은 8단계의 농도(0.078, 0.156, 0.313, 0.625, 1.25, 2.5, 5, 10 mM)로 투여하여 실시하였다. 투여 농도 증가에 따른 염색체이상의 빈도가 증가하는 양상이 나타나지 않았다. 48시간의 투여군에서는 8단계의 농도(0.078, 0.156, 0.313, 0.625, 1.25, 2.5, 5, 10 mM)로 투여하여 실시하였는데 투여 농도 증가에 따른 염색체이상의 빈도가 증가하는 양상이 나타나지 않았다. 배수체의 염색체이상은 직접법에서 관찰되지 않았다. 대사활성화법을 이용하여 6시간 시험물질을 투여한 시험에 있어서는 8단계의 용량단계(0.078, 0.156, 0.313, 0.625, 1.25, 2.5, 5, 10mM)를 설정하였는데 투여 농도가 증가함에 따른 염색체이상빈도의 증가양상이 관찰되지 않았다. 이상의 결과를 종합할 때 본 시험물질은 본 시험 조건하에서 CHO-K1세포에서 대사활성화를 시켰을 때 염색체이상을 유발하지 않는 것으로 판단된다.

Effects of Progesterone on the Macromolecular Syntheses in Mouse Preimplantation Embryos in Vitro (프로제스트론이 培養中인 생쥐 初期胚兒의 高分子化合物合成에 미치는 影響에 관하여)

  • Cho, Wan-Kyoo;Kwon, Hyuk-Bang
    • The Korean Journal of Zoology
    • /
    • v.22 no.2
    • /
    • pp.81-93
    • /
    • 1979
  • Metabolic changes of early mouse embryos treated with progesterone were investigated in order to elucidate the mode of action of progesterone on embryogenesis in vitro. The embryos were cultured, and labelled with radioactive precursors of macromolecules for certain periods in the absence or presence of various concentrations of progesterone by employing the microtube culture technique. The changes of transport and macromolecular synthesis systems of the embryos were examined by measuring the amounts of uptake and incorporation of the precursors. The results obtained were as follows: 1. Progesterone stimulated markedly the uptake of amino acids, but rather suppressed their incorporation by embryonic cells. 2. Progesterone suppressed both the uptake and incorporation of nucleotide precursors (uridine and thymidine) by embryonic cells. 3. Progesterone penetrated into the embryonic cell membranes and was taken up by them. The present results seem to indicate that the inhibition of the progesterone on the mammalian embryogenesis in vitro may not be directly related to the membrane transport system. They seem to imply that progesterone would penetrate into the embryonic cells and may directly block the biosynethetic pathways of macromolecules, and so lead to the inhibition of the embryogenesis in vitro.

  • PDF

Molecular Characterization of $Ca_v2.3$ in Rat Trigeminal Ganglion Neurons

  • Fang, Zhi;Kim, Joong-Soo;Oh, Seog-Bae
    • International Journal of Oral Biology
    • /
    • v.31 no.2
    • /
    • pp.45-51
    • /
    • 2006
  • R-type($Ca_v2.3$) calcium channel contributes to pain sensation in peripheral sensory neurons. Six isoforms of $Ca_v2.3$ that result from combinations of presence or deletion of three inserts(insert I and insert in the II-III loop, and insert III in N-terminal regions) have been demonstrated to be present in different mammalian tissues. However, the molecular basis of $Ca_v2.3$ in trigeminal ganglion(TG) neurons is not known. In the present study, we determined which isoforms of $Ca_v2.3$ are expressed in rat TG neurons using the RT-PCR analysis. Whole tissue RT-PCR analyses revealed that only two isoforms, $Ca_v2.3a$ and $Ca_v2.3e$, were present in TG neurons. From single-cell RT-PCR, we found that $Ca_v2.3e$ rather than $Ca_v2.3a$ was the major isoform expressed in TG neurons, and $Ca_v2.3e$ was preferentially detected in small-sized neurons that express nociceptive marker, transient receptor potential vanilloid 1(TRPV1). Our results suggest that $Ca_v2.3e$ in trigeminal neurons may be a potential target for the pain treatment.

Gintonin stimulates autophagic flux in primary cortical astrocytes

  • Rahman, Md. Ataur;Hwang, Hongik;Nah, Seung-Yeol;Rhim, Hyewhon
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.67-78
    • /
    • 2020
  • Background: Gintonin (GT), a novel ginseng-derived exogenous ligand of lysophosphatidic acid (LPA) receptors, has been shown to induce cell proliferation and migration in the hippocampus, regulate calcium-dependent ion channels in the astrocytes, and reduce β-amyloid plaque in the brain. However, whether GT influences autophagy in cortical astrocytes is not yet investigated. Methods: We examined the effect of GT on autophagy in primary cortical astrocytes using immunoblot and immunocytochemistry assays. Suppression of specific proteins was performed via siRNA. LC3 puncta was determined using confocal microscopy. Results: GT strongly upregulated autophagy marker LC3 by a concentration- as well as time-dependent manner via G protein-coupled LPA receptors. GT-induced autophagy was further confirmed by the formation of LC3 puncta. Interestingly, on pretreatment with an mammalian target of rapamycin (mTOR) inhibitor, rapamycin, GT further enhanced LC3-II and LC3 puncta expression. However, GT-induced autophagy was significantly attenuated by inhibition of autophagy by 3-methyladenine and knockdown Beclin-1, Atg5, and Atg7 gene expression. Importantly, when pretreated with a lysosomotropic agent, E-64d/peps A or bafilomycin A1, GT significantly increased the levels of LC3-II along with the formation of LC3 puncta. In addition, GT treatment enhanced autophagic flux, which led to an increase in lysosome-associated membrane protein 1 and degradation of ubiquitinated p62/SQSTM1. Conclusion: GT induces autophagy via mTOR-mediated pathway and elevates autophagic flux. This study demonstrates that GT can be used as an autophagy-inducing agent in cortical astrocytes.

Induction of Two Mammalian PER Proteins is Insufficient to Cause Phase Shifting of the Peripheral Circadian Clock

  • Lee, Joon-Woo;Cho, Sang-Gil;Cho, Jun-Hyung;Kim, Han-Gyu;Bae, Ki-Ho
    • Animal cells and systems
    • /
    • v.9 no.3
    • /
    • pp.153-160
    • /
    • 2005
  • Most living organisms exhibit the circadian rhythm in their physiology and behavior. Recent identification of several clock genes in mammals has led to the molecular understanding of how these components generate and maintain the circadian rhythm. Many reports have implicated the photic induction of either mPer1 or mPer2 in the hypothalamic region called the suprachiasmatic nucleus (SCN) to phase shift the brain clock. It is now established that peripheral tissues other than the brain also express these clock genes and that the clock machinery in these tissues work in a similar way to the SCN clock. To determine the role of the two canonical clock genes, mPer1 and mPer2, in the peripheral clock shift, stable HEK293EcR cell lines that can be induced and stably express these proteins were prepared. By regulating the expression of these proteins, it could be shown that induction of the clock genes, either mPer1 or mPer2 alone is not sufficient to cause clock phase shifting in these cells. Our real-time PCR analysis on these cells indicates that the induction of mPER proteins dampens the expression of the clock-specific transcription factor mBmal1. Altogether, our present data suggest that mPer1 and mPer2 may not function in clock shift or take part in differential roles on the peripheral circadian clock.

Enhanced Production of Albumin-erythropoietin by Histone Deacetylase Inhibitors in Recombinant CHO Cells (유전자재조합 CHO 세포에서 Histone Deacetylase Inhibitor를 이용한Albumin-erythropoietin 생산성 증진)

  • Kim, Su-Jin;Seo, Joon-Serk;Choi, Sung-Hun;Cha, Hyun-Myoung;Lim, Jin-Hyuk;Shin, Soo-Ah;Shin, Yeon-Kyeong;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.30 no.1
    • /
    • pp.44-51
    • /
    • 2015
  • Chinese hamster ovary (CHO) cells are the most widely used mammalian host for the commercial production of recombinant proteins. However, they show relatively low yields of recombinant proteins in comparison with microbial cells. Various strategies have been tried to overcome this drawback. The acetyl moieties are attached to the N-terminus of histone by histone acetyltransferase (HAT) while histone deacetylase (HDAC) removes histone-bound acetyl groups. HDAC inhibitor (HDACi), such as sodium butyrate, sodium propionate and valproic acid, can enhance specific productivity of CHO cells. Human albumin-erythropoietin (Alb-EPO) is a novel 105 kDa protein comprising recombinant human EPO fused to human albumin. In this study, we examined the effects of HDACi on the production of Alb-EPO in CHO cells with various concentrations in the range of 0-1 mM. The results showed that sodium butyrate was found to be the best HDACi for enhancing productivity. It enhanced not only the production of Alb-EPO but also the apoptosis of recombinant CHO cells.

Efficient Cryopreservation of Porcine Blastocysts produced by In Vitro Fertilization

  • Min, Sung-Hun;Jeong, Hak Jun;Koo, Deog-Bon
    • Journal of Embryo Transfer
    • /
    • v.31 no.1
    • /
    • pp.39-46
    • /
    • 2016
  • Cryopreservation has been applied successfully in many mammalian species. Nevertheless, pig embryos, because of their greater susceptibility to cryoinjuries, have shown a reduced developmental competence. The aim of this study was to evaluate the survival status of vitrified-warmed porcine embryos. Forced blastocoele collapse (FBC) and non-FBC blastocysts are vitrified and concomitantly cultured in culture media which were supplemented with/without fetal bovine serum (FBS). Porcine vitrified-warmed embryos were examined in four different methods: group A, non-FBC without FBS; group B, non-FBC with FBS; group C, FBC without FBS; group D, FBC with FBS. After culture, differences in survival rates of blastocysts derived from vitrified-warmed porcine embryos were found in group A~D (39.5 (A) vs 52.5 (B) and 54.8 (C) vs 66.7% (D), respectively, p<0.05). Reactive oxygen species (ROS) level of survived blastocysts was lower in group D than that of another groups (p<0.05). Moreover, total cell number of survived blastocysts was higher in group D than that of other groups (p<0.05). Otherwise, group D showed significantly lower number of apoptotic cells than other groups ($2.0{\pm}1.5$ vs $3.2{\pm}2.1$, $2.8{\pm}1.9$, and $2.7{\pm}1.6$, respectively, p<0.05). Taken together, these results showed that FBS/FBC improves the developmental competence of vitrified porcine embryos by modulating intracellular levels of ROS and the apoptotic index during the vitrification/warming procedure. Therefore, we suggest that FBS and FBC are effective treatment techniques during the vitrification/warming procedures of porcine blastocysts.

Short-Hairpin RNA-Mediated Gene Expression Interference in Trichoplusia ni Cells

  • Kim, Na-Young;Baek, Jin-Young;Choi, Hong-Seok;Chung, In-Sik;Shin, Sung-Ho;Lee, Jung-Ihn;Choi, Jung-Yun;Yang, Jai-Myung
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.190-198
    • /
    • 2012
  • RNA interference (RNAi) is rapidly becoming a valuable tool in biological studies, as it allows the selective and transient knockdown of protein expression. The short-interfering RNAs (siRNAs) transiently silence gene expression. By contrast, the expressed short-hairpin RNAs induce long-term, stable knockdown of their target gene. Trichoplusia ni (T. ni) cells are widely used for mammalian cell-derived glycoprotein expression using the baculovirus system. However, a suitable shRNA expression system has not been developed yet. We investigated the potency of shRNA-mediated gene expression inhibition using human and Drosophila U6 promoters in T. ni cells. Luciferase, EGFP, and ${\beta}$-N-acetylglucosaminidase (GlcNAcase) were employed as targets to investigate knockdown of specific genes in T. ni cells. Introduction of the shRNA expression vector under the control of human U6 or Drosophila U6 promoter into T. ni cells exhibited the reduced level of luciferase, EGFP, and ${\beta}$-N-acetylglucosaminidase compared with that of untransfected cells. The shRNA was expressed and processed to siRNA in our vector-transfected T. ni cells. GlcNAcase mRNA levels were down-regulated in T. ni cells transfected with shRNA vectors-targeted GlcNAcase as compared with the control vector-treated cells. It implied that our shRNA expression vectors using human and Drosophila U6 promoters were applied in T. ni cells for the specific gene knockdown.