• 제목/요약/키워드: Mammalian cell

검색결과 731건 처리시간 0.025초

Mouse L Cell에서의 외래 유전자 유래 단백질의 생산 (The Production of Foreign Protein in Mouse L Cell)

  • 최윤희;;최차용
    • 한국미생물·생명공학회지
    • /
    • 제21권5호
    • /
    • pp.421-427
    • /
    • 1993
  • Some interleukin 6 (IL-60 transcription control factors were resported as the regulator of IL-6 expression. A nuclear protein bound to interleukin 1 (IL-1) responsive element in the IL-6 promoter region was named NF-IL6 (nuclear factor for IL-6). This NF-IL6 was known to be very imporant as a transcription factor for various immuno-protein as well as for IL-6. The human NF-IL6 genes were transfected into the mouse L cells under the metallothionein promoter (MT promoter) to establish a model system for the expression of foreign gene in the mammalian cell line.

  • PDF

SIMULTANEOUS EXPRESSION OF HUMAN CYTOCHROME P450 3A5 AND NADPH-CYTOCHROME P450 REDUCTASE IN CHINESE HAMSTER OVARY CELL USING INTERNAL RIBOSOME ENTRY SITE

  • Kang, Hyuck-Joon;Kang, Jin-Sun;Dong, Mi-Sook;Park, Chang-Hwan
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Dietary and Medicinal Antimutgens and Anticarcinogens
    • /
    • pp.189-189
    • /
    • 2001
  • For a continuous expression of human cytochrome p450 3A5 (CYP3A5) and NADPH-cytochrome P450 reductase (CYPR) proteins, bicistronic construct (CYP3A5BC-LNCX2) was made using internal ribosome entry site (IRES). As for mammalian cell expression, we used pLNCX2 retroviral vector; and using calcium phosphate, plasmid transfer was achieved in 293GPG cell and transduced in Chinese hamster ovary (CHO) cell.(omitted)

  • PDF

Isolation of Candidate Nek2-Interating Protein Genes(NIPs)

  • 유재철;장성기;리건수
    • Animal cells and systems
    • /
    • 제6권2호
    • /
    • pp.181-181
    • /
    • 2002
  • Nek2 is a mammalian protein kinase that is structurally homologous to NIMA, a mitotic regulator in Aspergillus nidulans. We recently observed that the Nek2 protein was localized in multiple sites within a cell in a cell cycle state-specific manner. This suggests that Ndk2 is involved in diverse cellular functions during the cell cycle progression. To have a better understanding on cellular functions in which Nek2 participates, we carried out yeast two-hybrid screening and isolated six candidate clones whose products interact with Nek2. Most of Nek2-interacting proteins (NIPs) appear cytoplasmic, suggesting that Nek2 is involved in cellular functions in cytoplasm. Further experiments are under progress to confirm their interactions with Nek2 and to understand their biological significance.

Mechanisms of amino acid sensing in mTOR signaling pathway

  • Kim, Eun-Jung
    • Nutrition Research and Practice
    • /
    • 제3권1호
    • /
    • pp.64-71
    • /
    • 2009
  • Amino acids are fundamental nutrients for protein synthesis and cell growth (increase in cell size). Recently, many compelling evidences have shown that the level of amino acids is sensed by extra- or intra-cellular amino acids sensor(s) and regulates protein synthesis/degradation. Mammalian target of rapamycin complex 1 (mTORC1) is placed in a central position in cell growth regulation and dysregulation of mTOR signaling pathway has been implicated in many serious human diseases including cancer, diabetes, and tissue hypertrophy. Although amino acids are the most potent activator of mTORC1, how amino acids activate mTOR signaling pathway is still largely unknown. This is partly because of the diversity of amino acids themselves including structure and metabolism. In this review, current proposed amino acid sensing mechanisms to regulate mTORC1 and the evidences pro/against the proposed models are discussed.

Synergistic Enhancement of Paclitaxel-Induced Inhibition of Cell Growth by Metformin in Melanoma Cells

  • Ko, Gihyun;Kim, Taehyung;Ko, Eunjeong;Park, Deokbae;Lee, Youngki
    • 한국발생생물학회지:발생과생식
    • /
    • 제23권2호
    • /
    • pp.119-128
    • /
    • 2019
  • Melanoma is one of the most aggressive and treatment-resistant malignancies. Antidiabetic drug metformin has been reported to inhibit cell proliferation and metastasis in many cancers, including melanoma. Metformin suppresses the mammalian target of rapamycin (mTOR) and our previous study showed that it also inhibits the activity of extracellular signal-regulated kinase (ERK). Paclitaxel is currently prescribed for treatment of melanoma. However, paclitaxel induced the activation of ERK/mitogen-activated protein kinase (MAPK) pathway, a cell signaling pathway implicated in cell survival and proliferation. Therefore, we reasoned that combined treatment of paclitaxel with metformin could be more effective in the suppression of cell proliferation than treatment of paclitaxel alone. Here, we investigated the combinatory effect of paclitaxel and metformin on the cell survival in SK-MEL-28 melanoma cell line. Our study shows that the combination of paclitaxel and metformin has synergistic effect on cell survival and suppresses the expression of proteins involved in cancer metastasis. These findings suggest that the combination of paclitaxel and metformin can be a possible therapeutic option for treatment of melanoma.

A Splice Variant of the C2H2-Type Zinc Finger Protein, ZNF268s, Regulates NF-κB Activation by TNF-α

  • Chun, Jung Nyeo;Song, In Sung;Kang, Dong-Hoon;Song, Hye Jin;Kim, Hye In;Suh, Ja Won;Lee, Kong Ju;Kim, Jaesang;Won, Sang
    • Molecules and Cells
    • /
    • 제26권2호
    • /
    • pp.175-180
    • /
    • 2008
  • $I{\kappa}B$ kinase (IKK), the pivotal kinase in signal-dependent activation of nuclear factor-${\kappa}B$ (NF-${\kappa}B$), is composed of multiple protein components, including IKK ${\alpha}/{\beta}/{\gamma}$ core subunits. To investigate the regulation of the IKK complex, we immunoaffinity purified the IKK complex, and by MALDI-TOF mass spectrometry identified a splice variant of zinc finger protein 268 (ZNF268) as a novel IKKinteracting protein. Both the full-length and the spliced form of the ZNF268 protein were detected in a variety of mammalian tissues and cell lines. The genes were cloned and expressed by in vitro transcription/translation. Several deletion derivatives, such as KRAB domain (KRAB) on its own, the KRAB/spacer/4-zinc fingers (zF4), and the spacer/4-zinc fingers (zS4), were ectopically expressed in mammalian cells and exhibited had different subcellular locations. The KRAB-containing mutants were restricted to the nucleus, while zS4 was localized in the cytosol. TNF-${\alpha}$-induced NF-${\kappa}B$ activation was examined using these mutants and only zS4 was found to stimulate activation. Collectively, the results indicate that a spliced form of ZNF268 lacking the KRAB domain is located in the cytosol, where it seems to play a role in TNF-${\alpha}$-induced NF-${\kappa}B$ activation by interacting with the IKK complex.

Certification of Gibroblase Cell Adhesion and Spreading Mediated by Arg-Gly-Asp (RGD) Sequence on Thermo-Reversible Hydrogel

  • NA, KUN;DONG-WOON KIM;KEUN-HONG PARK
    • Journal of Microbiology and Biotechnology
    • /
    • 제11권6호
    • /
    • pp.922-927
    • /
    • 2001
  • In an effort to regulate the mammalian cell behavior in entrapment with a gel, we have functionalized hydrogels with the putative cell-binding (-Arg-Gly-Asp-)(RGD) domain. An adhesion molecule of Gly-Arg-Gly-Asp-Ser (GRGDS) peptides, a cell recognition ligand, was induced into thermo-reversible hydrogels, composed of N-isopropylacrylamide with small amounts of acrylic acid (typically 2-5 $mol\%$ in feed), as a biomimetic extracellular matrix (ECM). The GRGDS containing a p(NiPAAm-co-AAc) copolymer gel was studied in vitro for its ability to promote the spreading and viability of cells by introducing a GRGDS sequence. Hydrogel with no adhesion molecule was a poor ECM for adhesion, permiting spreading of only $3\%$ of the seeded cells for 36h. By immobilizing the peptide linkage into the hydrogel, the conjugation of RGD promoted $50\%$ of proliferation for 36h. However, the GREDS sequence, nonadhesive peptide linkage, conjugated hydrogel showed only $5\%$ of the seeded cell for the same time period. In addition, with the serum-free medium, only GRGDS peptides conjugated to hydrogel was able to promotecell spreading, while there was no cell proliferation in the hydrogel without GRGDS. Thus, the GRGDS peptide-conjugated thermo-reversible hydrogel specifically mediated the cell spreading. This result suggests that utilization of peptide sequences conjugating with the cell-adhesive motifs can enhance the degree of cell surface interaction and influence the long-term formation of ECM in vitro.

  • PDF

CHO 세포 배양을 통한 Recombinant Human Erythropoietin의 생산에서 저혈청 배지와 배양 첨가물질이 미치는 영향 (Effects of Low-Serum Medium and Various Culture Additives on Production of Recombinant Human Erythropoietin in CHO Cell Cultures)

  • 이경선;차현명;임진혁;김동일
    • KSBB Journal
    • /
    • 제32권2호
    • /
    • pp.90-95
    • /
    • 2017
  • Mammalian cell cultures have been used extensively to produce proteins for therapeutic agent because of their ability to perform post-translational modification including glycosylation. To produce recombinant protein, many factors and parameter are considered such as media composition, host cell type, and culture process. In this study, recombinant human erythropoietin (rhEPO) producing cell line was established by using glutamine synthetase system. To reduce serum concentration in media, we compared direct adaptation with step adaptation. Cell growth was faster in step adaptation. In low-level serum media, there were insufficient glucose for cell growth. Thus, we added glucose in low-level serum media from 2 g/L to 4.5 g/L. Titer of rhEPO was higher than other conditions at 4.5 g/L of glucose. Additionally, N-methyl-D-aspartate (NMDA), 13-cis-retinal, and pluronic F-68 (PF-68) were added to enhance productivity in CHO cell cultures. In conclusion, we applied CHO cell producing rhEPO to low-level of serum in media using step-adaptation. Also, we confirmed positive effect of NMDA, 13-cis-retinal, and PF-68.

Mouse Melanoma Cell Migration is Dependent on Production of Reactive Oxygen Species under Normoxia Condition

  • Im, Yun-Sun;Ryu, Yun-Kyoung;Moon, Eun-Yi
    • Biomolecules & Therapeutics
    • /
    • 제20권2호
    • /
    • pp.165-170
    • /
    • 2012
  • Cell migration plays a role in many physiological and pathological processes. Reactive oxygen species (ROS) produced in mammalian cells influence intracellular signaling processes which in turn regulate various biological activities. Here, we investigated whether melanoma cell migration could be controlled by ROS production under normoxia condition. Cell migration was measured by wound healing assay after scratching confluent monolayer of B16F10 mouse melanoma cells. Cell migration was enhanced over 12 h after scratching cells. In addition, we found that ROS production was increased by scratching cells. ERK phosphorylation was also increased by scratching cells but it was decreased by the treatment with ROS scavengers, N-acetylcysteine (NAC). Tumor cell migration was inhibited by the treatment with PD98059, ERK inhibitor, NAC or DPI, well-known ROS scavengers. Tumor cell growth as judged by succinate dehydrogenase activity was inhibited by NAC treatment. When mice were intraperitoneally administered with NAC, the intracellular ROS production was reduced in peripheral blood mononuclear cells. In addition, B16F10 tumor growth was significantly inhibited by in vivo treatment with NAC. Collectively, these findings suggest that tumor cell migration and growth could be controlled by ROS production and its downstream signaling pathways, in vitro and in vivo.

Characterization of B- , T- , and NK-like Cells in Nile Tilapia (Oreochromis nilotica)

  • Choi, Sang-Hoon;Oh, Chan-Ho
    • Animal cells and systems
    • /
    • 제4권4호
    • /
    • pp.341-345
    • /
    • 2000
  • It has been very difficult to develop and evaluate efficient fish vaccines because fish immune cells have not been properly characterized. In this study, we investigated the cell-mediated immunological properties of B- and T-like cells in Nile tilapia (Oreochromis nilotica). Surface immunoglobulin negative ($slg^{-}$) cell population proliferated in response to mammalian T-cell mitogens PHA and Con A, while surface immunoglobulin positive ($slg^{+}$) cells responded to the B-cell mitogen LPS. The slg$^{[-10]}$ cells from hemocyanin (HC)-immunized Tilapia, compared to the non-immunized control, reacted more to PHA than to Con A. Unexpectedly, antigen (Ag)-specific response was observed in both $slg^{-}$ and $slg^{-}$cells. Regardless of HC immunization, whole leukocytes from 8 head kidney of fish showed natural killer (NK)cell activity. Especially, NK cell activity was much higher in slg$^{[-10]}$ cells than in slg$^{+}$cells, indicating the possibility that fish NK cells were not at least associated with slg$^{+}$ cell population and not activated by Ag. Further understanding of functional fish immune cells will help to evaluate and develop effective vaccines for fishes and to monitor the course of therapy In infected fishes.hes.

  • PDF