• Title/Summary/Keyword: Mammalian cell

Search Result 731, Processing Time 0.028 seconds

Single Cell Gel Electrophoresis (comet assay) to Detect DNA Damage and Apoptosis in Cell Level (DNA damage와 Apoptosis를 정량화하는 단세포전기영동법)

  • 류재천;김현주;서영록;김경란
    • Environmental Mutagens and Carcinogens
    • /
    • v.17 no.2
    • /
    • pp.71-77
    • /
    • 1997
  • The single cell gel electrophoressis(SCGE) assay, also known as the comet assay, is a rapid, simple, visual and sensitive technique for measuring and analysing DNA breakage in mammalian cells. The SCGE or comet assay is a promising test for the detection of DNA damage and repair in individnal cells. It has widespread potential applications in DNA damage and repair studies, genotoxicity testing and biomonitoring. In this microgel electrophoresis technique, cells are embedded in agarose gel on microscope slides, iysed and electrophoresed under alkaline conditions. Cells with increased DNA damage display increased migration of DNA from the nucleus towards the anode. The length of DNA migration indicates the amount of DNA breakage in the cell. The comet assay is also capable of identifying apoptotic cells which contain highly fragmented DNA. Here we review the development of the SCGE assay, existing protocols for the detection and analysis of comets, the relevant underlying principles determining the behaviour of DNA and the potential applications of the technique.

  • PDF

Identification and Characterization of Rodent Germ Cells-Specific Hyaluronidases

  • Kim, Ekyune;Chang, Kyu-Tae
    • Reproductive and Developmental Biology
    • /
    • v.36 no.3
    • /
    • pp.155-161
    • /
    • 2012
  • Germ cell-specific hyaluronidases such as sperm adhesion molecule 1 (SPAM1) and hyaluronoglucosaminidase 5 (Hyal5) are in part responsible for dispersal of the cumulus cell mass, which is a critical step in establishing fertilization in mammals. In this study, we identified two testis-hyaluronidases, SPAM1 and Hyal5, in hamster and rat. These two genes were expressed specifically in the testis. At the protein level, hamster SPAM1 and Hyal5 display 78.7% and 75.4% identity with mouse SPAM1 and Hyal5. Further, the activity of the enzymes with respect to cumulus cell dispersion did not differ, although we observed that the enzymatic activity differed in pH range. These studies suggest that different sperm hyaluronidases are capable of dispersing the cumulus cell mass despite differences in enzyme activity.

Enhanced delivery of protein fused to cell penetrating peptides to mammalian cells

  • Moon, Jung-Il;Han, Min-Joon;Yu, Shin-Hye;Lee, Eun-Hye;Kim, Sang-Mi;Han, Kyuboem;Park, Chang-Hwan;Kim, Chun-Hyung
    • BMB Reports
    • /
    • v.52 no.5
    • /
    • pp.324-329
    • /
    • 2019
  • Recent progress in cellular reprogramming technology and lineage-specific cell differentiation has provided great opportunities for translational research. Because virus-based gene delivery is not a practical reprogramming protocol, protein-based reprogramming has been receiving attention as a safe way to generate reprogrammed cells. However, the poor efficiency of the cellular uptake of reprogramming proteins is still a major obstacle. Here, we reported key factors which improve the cellular uptake of these proteins. Purified red fluorescent proteins fused with 9xLysine (dsRED-9K) as a cell penetrating peptide were efficiently delivered into the diverse primary cells. Protein delivery was improved by the addition of amodiaquine. Furthermore, purified dsRED-9K was able to penetrate all cell lineages derived from mouse embryonic stem cells efficiently. Our data may provide important insights into the design of protein-based reprogramming or differentiation protocols.

Molecular Aspects of Japanese Encephalitis Virus Persistent Infection in Mammalian Cells

  • Park Sun-Hee;Won Sung Yong;Park Soo-Young;Yoon Sung Wook;Han Jin Hyun;Jeong Yong Seok
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2000.05a
    • /
    • pp.23-36
    • /
    • 2000
  • Japanese encephalitis virus (JEV) is the causative agent of a mosquito-borne encephalitis and is transmitted to human via persistently infected mosquito vectors. Although the virus is known to cause only acute infection, there were reports that showed neurological sequelae, latent infection in peripheral mononuclear cells, and recurrence of the disease after acute encephalitis. Innate resistance of certain cell lines, abnormal SN1 expression of the virus, and anti-apoptotic effect of cullular bcl-2 have been suggested as probable causes of JEV persistence even in the absence of defective interfering (DI) particles. Although possible involvement of DI particles in JEV persistence was suggested, neither has a direct evidence for DI presence nor its molecular characterization been made. Two questions asked in this study are whether the DI virus plays any role in JEV persistent infection if it is associated with and what type of change(s) can be made in persistently infected cells to avoid apoptosis even with the continuous virus replication, DI-free standard stock of JEV was infected in BHK-21, Vero, and SW13 cells and serial high multiplicity passages were performed in order to generate DI particles. There different-sized DI RNA species which were defective in both structural and nonstructural protein coding genes. Rescued ORFs of the DI genome maintained in-frame and the presence of replicative intermediate or replicative form RNA of the DI particles confirmed their replication competence. On the other hand, several clones with JEV persistent infection were established from the cells survived acute infections during the passages. Timing of the DI virus generation during the passages seemed coincide to the appearance of persistently infected cells. The DI RNAs were identified in most of persistently infected cells and were observed throughout the cell maintenance. One of the cloned cell line maintained the viral persistence without DI RNA coreplication. The cells with viral persistence released the reduced but continuous infectious JEV particle for up to 9 months and were refractory to homologous virus superinfection but not to heterologous challenges. Unlike the cells with acute infection these cells were devoid of characteristic DNA fragmentation and JEV-induced apoptosis with or without homologous superinfection. Therefore, the DI RNA generated during JEV undiluted serial passage on mammalian cells was shown to be biologically active and it seemed to be responsible, at least in part, for the establishment and maintenance of the JEV persistence in mammalian cells. Viral persistence without DI RNA coreplication, as in one of the cell clones, supports that JEV persistent infection could be maintained with or without the presence of DI particles. In addition, the fact that the cells with JEV persistence were resistant against homologous virus superinfection, but not against heterologous one, suggests that different viruses have their own and independent pathway for cytopathogenesis even if viral cytopathic effect could be converged to an apoptosis after all.

  • PDF

Effect of Neurotrophic Factors on Neuronal Stem Cell Death

  • KimKwon, Yun-Hee
    • BMB Reports
    • /
    • v.35 no.1
    • /
    • pp.87-93
    • /
    • 2002
  • Neural cell survival is an essential concern in the aging brain and many diseases of the central nervous system. Neural transplantation of the stem cells are already applied to clinical trials for many degenerative neurological diseases, including Huntington's disease, Parkinson's disease, and strokes. A critical problem of the neural transplantation is how to reduce their apoptosis and improve cell survival. Neurotrophic factors generally contribute as extrinsic cues to promote cell survival of specific neurons in the developing mammalian brains, but the survival factor for neural stem cell is poorly defined. To understand the mechanism controlling stem cell death and improve cell survival of the transplanted stem cells, we investigated the effect of plausible neurotrophic factors on stem cell survival. The neural stem cell, HiB5, when treated with PDGF prior to transplantation, survived better than cells without PDGF. The resulting survival rate was two fold for four weeks and up to three fold for twelve weeks. When transplanted into dorsal hippocampus, they migrated along hippocampal alveus and integrated into pyramidal cell layers and dentate granule cell layers in an inside out sequence, which is perhaps the endogenous pathway that is similar to that in embryonic neurogenesis. Promotion of the long term-survival and differentiation of the transplanted neural precursors by PDGF may facilitate regeneration in the aging adult brain and probably in the injury sites of the brain.

Mammalian Research Topics and Trends in Korea (국내 포유류 연구의 주제와 동향)

  • Ko, Byung June;Eo, Soo Hyung
    • Korean Journal of Environment and Ecology
    • /
    • v.31 no.1
    • /
    • pp.30-41
    • /
    • 2017
  • Mammals in Korea have been studied in various fields such as animal science, veterinary medicine, laboratory animal science, ecology, and genetics. As the importance of biodiversity has been emphasized recently, conservation and management of mammals have attracted much public attention. However, in spite of such an increase in scientific research and public interest, it is still difficult to find a report or summary to grasp the trend of mammalian research in Korea. The purpose of this study is to provide the basic data for future plans of the detailed research area and the related policies by grasping the research trends of mammals in Korea. Using text-ming and co-word analysis, we analyzed 392 mammalian research papers published in Korean national journals as of 2015. Our results showed that the number of mammalian research papers published in Korea has gradually increased and that the research target species have also become increasingly diverse. The major research areas identified through text-mining and co-word analysis are (1) evolution/phylogenetics/genetics, (2) environmental science/ecology, (3) embryology/reproductive biology/cell biology, (4) veterinary medicine related to parasites, (5) parasitology related to rodents, (6) bacteriology/virology, (7) anatomy/cell biology/laboratory animal science, (8) veterinary science related to morphology and anatomy, (9) animal science, (10) marine mammalogy, and (11) Chiroptera (bat) research. Environmental science/ecology has been the most active field among the 11 research areas in recent times, and the proportion of research has increased sharply compared to the past. Environmental science/ecology is the core of biodiversity conservation, and as the importance of biodiversity has been emphasized in recent years, researchers' interest in mammal ecology appears to have increased. We expect that the results of this study will be useful for future research plan and related policies on mammals in Korea.

인간 신경아세포종 세포 배양을 통한 뇌 신경세포 생육 촉진인자의 생산

  • Hong, Jong-Soo;Woo, Kwang-Hoe;Park, Kyung-You;Lee, Hyeon-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.1
    • /
    • pp.102-105
    • /
    • 1997
  • In cultivating human neuroblastoma cells maximum number of neurites per cell and length of the neurite were estimated as 5.5 and 2.2 (nm), respectively It was found that there was correlation between growth and differentiation of nerve cells. Maximum specific BDNF production rate was also calculated as 2.5$\times $10$^{-5}$(ng/cell/day) at 7$\times $ 10$^{5}$ (viable cells/ml) of maximum cell density, corresponding to 100 (ng/mL) of BDNF. The secretion of BDNF was occurred most in the later peroids of the cultivation, yielding 75 (ng/mL) of BDNF. The production of rate of BDNF was elongated in adding 1 ($\mu $g/mL) of BDNF as well as 40% increase of the length of the BDNF. It proves that BDNF can be used as one of biopharmaceuticals to treat age-related diseases such as Alzheimer's disease and Prakinson's disease. It can also provide the information of scaling-up mammalian cell cuture system to economically produce BDNF.

  • PDF

Correlation Between Enhancing Effect of Sodium Butyrate on Specific Productivity and mRNA Transcription Level in Recombinant Chinese Hamster Ovary Cells Producing Antibody

  • Jeon, Min-Kyoung;Lee, Gyun-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1036-1040
    • /
    • 2007
  • Sodium butyrate (NaBu) has been used to enhance protein expression levels in mammalian cell culture. To determine the clonal variability of recombinant Chinese hamster ovary (rCHO) cells in response to NaBu addition regarding specific antibody productivity $(q_{Ab})$, three rCHO clones were subjected to different concentrations of NaBu. For all three clones, NaBu addition inhibited cell growth and decreased cell viability in a dose-dependent manner. On the other hand, the enhancing effect of NaBu on $q_{Ab}$ varied significantly among the clones. NaBu addition enhanced the antibody production of only one clone. RT-PCR analysis revealed that the changes in $q_{Ab}$ correlated linearly with those of the mRNA transcription level. Thus, it was concluded that the different enhancing effects of NaBu on protein expression in rCHO cell clones resulted from their different mRNA transcription levels.

Development of Super-K562 Cells Producing Erythropoietin in Glucose-Free Medium

  • Lee, Tong-Il;Choe, Yeon-Suk;Bae, Geun-Won;Kim, Ik-Hwan
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.265-268
    • /
    • 2002
  • Lactate and ammonia are two major toxic waste products formed during mammalian cell culture. Accumulation of the side products have negative effects of on cell growth and specific production rate. In this study, K-562 cells were used as the host cell of a recombinant protein. Effects of carbon sources were invetigated focused on the cell culture span, the accumulation of lactate and ammonia in culture of recombinant K-562 cells.

  • PDF

유전자 재조합 형광 단백질 발현 동물세포의 고정화 및 바이오센서의 개발

  • Lee, Jeong-Eun;Gu, Man-Bok
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.53-56
    • /
    • 2002
  • Mammalian cell based biosensor kits are expected to be in assessment of samples toxicity more sensitive and accurate. A recombinant fluorescent Chinese Hamster Ovary (CHO) cell line was known to be responsive to the various toxicants Specially. KFC- AlO cell line. which contain the c-fos SRE::GFP plasmid (pKFG). was found to be able to detect toxicants sensitively. A biosensor kit was developed by using an immobilized KFC-A10 cell line. Immobilized recombinant fluorescent cells within agarose, known as a representative hydrogel matrix, have been maintained in the matrix viably and have shown constant fluorescent levels for long time. Immobilized cells have shown the ability to detect the chemical toxicity in the keep of fluorescent level as the metabolism is inhibited under toxic conditions.

  • PDF