• Title/Summary/Keyword: Malware-detection

Search Result 308, Processing Time 0.021 seconds

A Study on Hacking E-Mail Detection using Indicators of Compromise (침해지표를 활용한 해킹 이메일 탐지에 관한 연구)

  • Lee, Hoo-Ki
    • Convergence Security Journal
    • /
    • v.20 no.3
    • /
    • pp.21-28
    • /
    • 2020
  • In recent years, hacking and malware techniques have evolved and become sophisticated and complex, and numerous cyber-attacks are constantly occurring in various fields. Among them, the most widely used route for compromise incidents such as information leakage and system destruction was found to be E-Mails. In particular, it is still difficult to detect and identify E-Mail APT attacks that employ zero-day vulnerabilities and social engineering hacking techniques by detecting signatures and conducting dynamic analysis only. Thus, there has been an increased demand for indicators of compromise (IOC) to identify the causes of malicious activities and quickly respond to similar compromise incidents by sharing the information. In this study, we propose a method of extracting various forensic artifacts required for detecting and investigating Hacking E-Mails, which account for large portion of damages in security incidents. To achieve this, we employed a digital forensic indicator method that was previously utilized to collect information of client-side incidents.

Optimal Machine Learning Model for Detecting Normal and Malicious Android Apps (안드로이드 정상 및 악성 앱 판별을 위한 최적합 머신러닝 기법)

  • Lee, Hyung-Woo;Lee, HanSeong
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.2
    • /
    • pp.1-10
    • /
    • 2020
  • The mobile application based on the Android platform is simple to decompile, making it possible to create malicious applications similar to normal ones, and can easily distribute the created malicious apps through the Android third party app store. In this case, the Android malicious application in the smartphone causes several problems such as leakage of personal information in the device, transmission of premium SMS, and leakage of location information and call records. Therefore, it is necessary to select a optimal model that provides the best performance among the machine learning techniques that have published recently, and provide a technique to automatically identify malicious Android apps. Therefore, in this paper, after adopting the feature engineering to Android apps on official test set, a total of four performance evaluation experiments were conducted to select the machine learning model that provides the optimal performance for Android malicious app detection.

A Study on Generic Unpacking using Entropy Variation Analysis (엔트로피 값 변화 분석을 이용한 실행 압축 해제 방법 연구)

  • Lee, Young-Hoon;Chung, Man-Hyun;Jeong, Hyun-Cheol;Shon, Tae-Shik;Moon, Jong-Su
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.2
    • /
    • pp.179-188
    • /
    • 2012
  • Packing techniques, one of malicious code detection and analysis avoidance techniques, change code to reduce size and make analysts confused. Therefore, malwares have more time to spread out and it takes longer time to analyze them. Thus, these kind of unpacking techniques have been studied to deal with packed malicious code lately. Packed programs are unpacked during execution. When it is unpacked, the data inside of the packed program are changed. Because of these changes, the entropy value of packed program is changed. After unpacking, there will be no data changes; thus, the entropy value is not changed anymore. Therefore, packed programs could be unpacked finding the unpacking point using this characteristic regardless of packing algorithms. This paper suggests the generic unpacking mechanism using the method estimating the unpacking point through the variation of entropy values.

Intelligent & Predictive Security Deployment in IOT Environments

  • Abdul ghani, ansari;Irfana, Memon;Fayyaz, Ahmed;Majid Hussain, Memon;Kelash, Kanwar;fareed, Jokhio
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.185-196
    • /
    • 2022
  • The Internet of Things (IoT) has become more and more widespread in recent years, thus attackers are placing greater emphasis on IoT environments. The IoT connects a large number of smart devices via wired and wireless networks that incorporate sensors or actuators in order to produce and share meaningful information. Attackers employed IoT devices as bots to assault the target server; however, because of their resource limitations, these devices are easily infected with IoT malware. The Distributed Denial of Service (DDoS) is one of the many security problems that might arise in an IoT context. DDOS attempt involves flooding a target server with irrelevant requests in an effort to disrupt it fully or partially. This worst practice blocks the legitimate user requests from being processed. We explored an intelligent intrusion detection system (IIDS) using a particular sort of machine learning, such as Artificial Neural Networks, (ANN) in order to handle and mitigate this type of cyber-attacks. In this research paper Feed-Forward Neural Network (FNN) is tested for detecting the DDOS attacks using a modified version of the KDD Cup 99 dataset. The aim of this paper is to determine the performance of the most effective and efficient Back-propagation algorithms among several algorithms and check the potential capability of ANN- based network model as a classifier to counteract the cyber-attacks in IoT environments. We have found that except Gradient Descent with Momentum Algorithm, the success rate obtained by the other three optimized and effective Back- Propagation algorithms is above 99.00%. The experimental findings showed that the accuracy rate of the proposed method using ANN is satisfactory.

IACS UR E26 - Analysis of the Cyber Resilience of Ships (국제선급협회 공통 규칙 - 선박의 사이버 복원력에 대한 기술적 분석)

  • Nam-seon Kang;Gum-jun Son;Rae-Chon Park;Chang-sik Lee;Seong-sang Yu
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.27-36
    • /
    • 2024
  • In this paper, we analyze the unified requirements of international association of classification societies - cyber resilience of ships, ahead of implementation of the agreement on July 1, 2024, and respond to ship cyber security and resilience programs based on 5 requirements, 17 details, and documents that must be submitted or maintained according to the ship's cyber resilience,. Measures include document management such as classification certification documents and design documents, configuration of a network with enhanced security, establishment of processes for accident response, configuration management using software tools, integrated network management, malware protection, and detection of ship network security threats with security management solutions. proposed a technology capable of real-time response.

Machine Learning Based Automated Source, Sink Categorization for Hybrid Approach of Privacy Leak Detection (머신러닝 기반의 자동화된 소스 싱크 분류 및 하이브리드 분석을 통한 개인정보 유출 탐지 방법)

  • Shim, Hyunseok;Jung, Souhwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.4
    • /
    • pp.657-667
    • /
    • 2020
  • The Android framework allows apps to take full advantage of personal information through granting single permission, and does not determine whether the data being leaked is actual personal information. To solve these problems, we propose a tool with static/dynamic analysis. The tool analyzes the Source and Sink used by the target app, to provide users with information on what personal information it used. To achieve this, we extracted the Source and Sink through Control Flow Graph and make sure that it leaks the user's privacy when there is a Source-to-Sink flow. We also used the sensitive permission information provided by Google to obtain information from the sensitive API corresponding to Source and Sink. Finally, our dynamic analysis tool runs the app and hooks information from each sensitive API. In the hooked data, we got information about whether user's personal information is leaked through this app, and delivered to user. In this process, an automated Source/Sink classification model was applied to collect latest Source/Sink information, and the we categorized latest release version of Android(9.0) with 88.5% accuracy. We evaluated our tool on 2,802 APKs, and found 850 APKs that leak personal information.

A Study on Effective Adversarial Attack Creation for Robustness Improvement of AI Models (AI 모델의 Robustness 향상을 위한 효율적인 Adversarial Attack 생성 방안 연구)

  • Si-on Jeong;Tae-hyun Han;Seung-bum Lim;Tae-jin Lee
    • Journal of Internet Computing and Services
    • /
    • v.24 no.4
    • /
    • pp.25-36
    • /
    • 2023
  • Today, as AI (Artificial Intelligence) technology is introduced in various fields, including security, the development of technology is accelerating. However, with the development of AI technology, attack techniques that cleverly bypass malicious behavior detection are also developing. In the classification process of AI models, an Adversarial attack has emerged that induces misclassification and a decrease in reliability through fine adjustment of input values. The attacks that will appear in the future are not new attacks created by an attacker but rather a method of avoiding the detection system by slightly modifying existing attacks, such as Adversarial attacks. Developing a robust model that can respond to these malware variants is necessary. In this paper, we propose two methods of generating Adversarial attacks as efficient Adversarial attack generation techniques for improving Robustness in AI models. The proposed technique is the XAI-based attack technique using the XAI technique and the Reference based attack through the model's decision boundary search. After that, a classification model was constructed through a malicious code dataset to compare performance with the PGD attack, one of the existing Adversarial attacks. In terms of generation speed, XAI-based attack, and reference-based attack take 0.35 seconds and 0.47 seconds, respectively, compared to the existing PGD attack, which takes 20 minutes, showing a very high speed, especially in the case of reference-based attack, 97.7%, which is higher than the existing PGD attack's generation rate of 75.5%. Therefore, the proposed technique enables more efficient Adversarial attacks and is expected to contribute to research to build a robust AI model in the future.

A Bloom Filter Application of Network Processor for High-Speed Filtering Buffer-Overflow Worm (버퍼 오버플로우 웜 고속 필터링을 위한 네트워크 프로세서의 Bloom Filter 활용)

  • Kim Ik-Kyun;Oh Jin-Tae;Jang Jong-Soo;Sohn Sung-Won;Han Ki-Jun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.7 s.349
    • /
    • pp.93-103
    • /
    • 2006
  • Network solutions for protecting against worm attacks that complement partial end system patch deployment is a pressing problem. In the content-based worm filtering, the challenges focus on the detection accuracy and its performance enhancement problem. We present a worm filter architecture using the bloom filter for deployment at high-speed transit points on the Internet, including firewalls and gateways. Content-based packet filtering at multi-gigabit line rates, in general, is a challenging problem due to the signature explosion problem that curtails performance. We show that for worm malware, in particular, buffer overflow worms which comprise a large segment of recent outbreaks, scalable -- accurate, cut-through, and extensible -- filtering performance is feasible. We demonstrate the efficacy of the design by implementing it on an Intel IXP network processor platform with gigabit interfaces. We benchmark the worm filter network appliance on a suite of current/past worms, showing multi-gigabit line speed filtering prowess with minimal footprint on end-to-end network performance.