• Title/Summary/Keyword: Malware variant

Search Result 23, Processing Time 0.017 seconds

Design of Malicious Traffic Dynamic Analysis System in Cloud Environment (클라우드 환경에서의 악성트래픽 동적 분석 시스템 설계)

  • Lee, Eun-Ji;Kwak, Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.3
    • /
    • pp.579-589
    • /
    • 2017
  • The cloud environment is hypervisor-based, and many virtual machines are interconnected, which makes propagation of malicious code easier than other environments. Accordingly, this paper proposes a malicious traffic dynamic analysis system for secure cloud environment. The proposed system continuously monitors and analyzes malicious activity in an isolated virtual network environment by distinguishing malicious traffic that occurs in a cloud environment. In addition, the analyzed results are reflected in the distinguishment and analysis of malicious traffic that occurs in the future. The goal of this research is secure and efficient malicious traffic dynamic analysis by constructing the malicious traffic analysis environment in the cloud environment for detecting and responding to the new and variant malicious traffic generated in the cloud environment.

Study on High-speed Cyber Penetration Attack Analysis Technology based on Static Feature Base Applicable to Endpoints (Endpoint에 적용 가능한 정적 feature 기반 고속의 사이버 침투공격 분석기술 연구)

  • Hwang, Jun-ho;Hwang, Seon-bin;Kim, Su-jeong;Lee, Tae-jin
    • Journal of Internet Computing and Services
    • /
    • v.19 no.5
    • /
    • pp.21-31
    • /
    • 2018
  • Cyber penetration attacks can not only damage cyber space but can attack entire infrastructure such as electricity, gas, water, and nuclear power, which can cause enormous damage to the lives of the people. Also, cyber space has already been defined as the fifth battlefield, and strategic responses are very important. Most of recent cyber attacks are caused by malicious code, and since the number is more than 1.6 million per day, automated analysis technology to cope with a large amount of malicious code is very important. However, it is difficult to deal with malicious code encryption, obfuscation and packing, and the dynamic analysis technique is not limited to the performance requirements of dynamic analysis but also to the virtual There is a limit in coping with environment avoiding technology. In this paper, we propose a machine learning based malicious code analysis technique which improve the weakness of the detection performance of existing analysis technology while maintaining the light and high-speed analysis performance applicable to commercial endpoints. The results of this study show that 99.13% accuracy, 99.26% precision and 99.09% recall analysis performance of 71,000 normal file and malicious code in commercial environment and analysis time in PC environment can be analyzed more than 5 per second, and it can be operated independently in the endpoint environment and it is considered that it works in complementary form in operation in conjunction with existing antivirus technology and static and dynamic analysis technology. It is also expected to be used as a core element of EDR technology and malware variant analysis.

Extraction and Taxonomy of Ransomware Features for Proactive Detection and Prevention (사전 탐지와 예방을 위한 랜섬웨어 특성 추출 및 분류)

  • Yoon-Cheol Hwang
    • Journal of Industrial Convergence
    • /
    • v.21 no.9
    • /
    • pp.41-48
    • /
    • 2023
  • Recently, there has been a sharp increase in the damages caused by ransomware across various sectors of society, including individuals, businesses, and nations. Ransomware is a malicious software that infiltrates user computer systems, encrypts important files, and demands a ransom in exchange for restoring access to the files. Due to its diverse and sophisticated attack techniques, ransomware is more challenging to detect than other types of malware, and its impact is significant. Therefore, there is a critical need for accurate detection and mitigation methods. To achieve precise ransomware detection, an inference engine of a detection system must possess knowledge of ransomware features. In this paper, we propose a model to extract and classify the characteristics of ransomware for accurate detection of ransomware, calculate the similarity of the extracted characteristics, reduce the dimension of the characteristics, group the reduced characteristics, and classify the characteristics of ransomware into attack tools, inflow paths, installation files, command and control, executable files, acquisition rights, circumvention techniques, collected information, leakage techniques, and state changes of the target system. The classified characteristics were applied to the existing ransomware to prove the validity of the classification, and later, if the inference engine learned using this classification technique is installed in the detection system, most of the newly emerging and variant ransomware can be detected.