• Title/Summary/Keyword: Malware attack

Search Result 131, Processing Time 0.023 seconds

Technologies Analysis based on IoT Security Requirements and Secure Operating System (IoT 보안 요구사항 및 보안 운영체제 기반 기술 분석)

  • Ko, Jae-Yong;Lee, Sang-Gil;Kim, Jin-Woo;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.4
    • /
    • pp.164-177
    • /
    • 2018
  • As the market for IoT devices grows, it is expected that the scale of malware attack will be considerable. Accordingly, the improvement of related legislation has been actively promoted, the recently strengthened Information and Communication Network Act was enforced. Because IoT related accidents can lead to not only financial damages but also human accidents, IoT device Security has been attracted a great deal of attention. In this paper, IoT devices provide essential security functions through legal and technical perspectives, and analyze related technologies. This can be used to a reference for the Start-up developer and IoT device designer.

Machine-Learning Anti-Virus Program Based on TensorFlow (텐서플로우 기반의 기계학습 보안 프로그램)

  • Yoon, Seong-kwon;Park, Tae-yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.441-444
    • /
    • 2016
  • Peace on the Korean Peninsula is threatened by physical aggressions and cyber terrors such as nuclear tests, missile launchings, senior government officials' smart phone hackings and DDos attacks to banking systems. Cyber attacks such as vulnerability for the hackings, malware distributions are generally defended by passive defense through the detecting signs of first invasion and attack, data analysis, adding library and updating vaccine programs. In this paper the concept of security program based on Google TensorFlow machine learning ability to perform adding libraries and solving security vulnerabilities by itself is researched and proposed.

  • PDF

Palliates the Attack by Hacker of Android Application through UID and Antimalware Cloud Computing

  • Zamani, Abu Sarwar;Ahmad, Sultan;Uddin, Mohammed Yousuf;Ansari, Asrar Ahmad;Akhtar, Shagufta
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.182-186
    • /
    • 2021
  • The market for smart phones has been booming in the past few years. There are now over 400,000 applications on the Android market. Over 10 billion Android applications have been downloaded from the Android market. Due to the Android popularity, there are now a large number of malicious vendors targeting the platform. Many honest end users are being successfully hacked on a regular basis. In this work, a cloud based reputation security model has been proposed as a solution which greatly mitigates the malicious attacks targeting the Android market. Our security solution takes advantage of the fact that each application in the android platform is assigned a unique user id (UID). Our solution stores the reputation of Android applications in an anti-malware providers' cloud (AM Cloud). The experimental results witness that the proposed model could well identify the reputation index of a given application and hence its potential of being risky or not.

Selection of Detection Measure using Traffic Analysis of Each Malicious Botnet (악성 봇넷 별 트래픽 분석을 통한 탐지 척도 선정)

  • Jang, Dae-Il;Kim, Min-Soo;Jung, Hyun-Chul;Noh, Bong-Nam
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.3
    • /
    • pp.37-44
    • /
    • 2011
  • Recently malicious activities that is a DDoS, spam, propagation of malware, steeling person information, phishing on the Internet are related malicious botnet. To detect malicious botnet, Many researchers study a detection system for malicious botnet, but these applies specific protocol, action or attack based botnet. In this reason, we study a selection of measurement to detec malicious botnet in this paper. we collect a traffic of malicious botnet and analyze it for feature of network traffic. And we select a feature based measurement. we expect to help a detection of malicious botnet through this study.

A study on Countermeasures by Detecting Trojan-type Downloader/Dropper Malicious Code

  • Kim, Hee Wan
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.288-294
    • /
    • 2021
  • There are various ways to be infected with malicious code due to the increase in Internet use, such as the web, affiliate programs, P2P, illegal software, DNS alteration of routers, word processor vulnerabilities, spam mail, and storage media. In addition, malicious codes are produced more easily than before through automatic generation programs due to evasion technology according to the advancement of production technology. In the past, the propagation speed of malicious code was slow, the infection route was limited, and the propagation technology had a simple structure, so there was enough time to study countermeasures. However, current malicious codes have become very intelligent by absorbing technologies such as concealment technology and self-transformation, causing problems such as distributed denial of service attacks (DDoS), spam sending and personal information theft. The existing malware detection technique, which is a signature detection technique, cannot respond when it encounters a malicious code whose attack pattern has been changed or a new type of malicious code. In addition, it is difficult to perform static analysis on malicious code to which code obfuscation, encryption, and packing techniques are applied to make malicious code analysis difficult. Therefore, in this paper, a method to detect malicious code through dynamic analysis and static analysis using Trojan-type Downloader/Dropper malicious code was showed, and suggested to malicious code detection and countermeasures.

Development of an open source-based APT attack prevention Chrome extension (오픈소스 기반 APT 공격 예방 Chrome extension 개발)

  • Kim, Heeeun;Shon, Taeshik;Kim, Duwon;Han, Gwangseok;Seong, JiHoon
    • Journal of Platform Technology
    • /
    • v.9 no.3
    • /
    • pp.3-17
    • /
    • 2021
  • Advanced persistent threat (APT) attacks are attacks aimed at a particular entity as a set of latent and persistent computer hacking processes. These APT attacks are usually carried out through various methods, including spam mail and disguised banner advertising. The same name is also used for files, since most of them are distributed via spam mail disguised as invoices, shipment documents, and purchase orders. In addition, such Infostealer attacks were the most frequently discovered malicious code in the first week of February 2021. CDR is a 'Content Disarm & Reconstruction' technology that can prevent the risk of malware infection by removing potential security threats from files and recombining them into safe files. Gartner, a global IT advisory organization, recommends CDR as a solution to attacks in the form of attachments. There is a program using CDR techniques released as open source is called 'Dangerzone'. The program supports the extension of most document files, but does not support the extension of HWP files that are widely used in Korea. In addition, Gmail blocks malicious URLs first, but it does not block malicious URLs in mail systems such as Naver and Daum, so malicious URLs can be easily distributed. Based on this problem, we developed a 'Dangerzone' program that supports the HWP extension to prevent APT attacks, and a Chrome extension that performs URL checking in Naver and Daum mail and blocking banner ads.

Designing SMS Phishing Profiling Model (스미싱 범죄 프로파일링 모델 설계)

  • Jeong, Youngho;Lee, Kukheon;Lee, Sangjin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.2
    • /
    • pp.293-302
    • /
    • 2015
  • With the attack information collected during SMS phishing investigation, this paper will propose SMS phishing profiling model applying criminal profiling. Law enforcement agencies have used signature analysis by apk file hash and analysis of C&C IP address inserted in the malware. However, recently law enforcement agencies are facing the challenges such as signature diversification or code obfuscation. In order to overcome these problems, this paper examined 169 criminal cases and found out that 89% of serial number in cert.rsa and 80% of permission file was reused in different cases. Therefore, the proposed SMS phishing profiling model is mainly based on signature serial number and permission file hash. In addition, this model complements the conventional file hash clustering method and uses code similarity verification to ensure reliability.

Detection and Prevention Method by Analyzing Malignant Code of Malignant Bot (악성 Bot에 대한 악성코드 분석을 통한 탐지 및 대응방안)

  • Kim, Soeui;Choi, Duri;An, Beongku
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.199-207
    • /
    • 2013
  • Recently, hacking is seen as a criminal activity beyond an activity associated with curiosity in the beginning. The malignant bot which is used as an attack technique is one of the examples. Malignant Bot is one of IRC Bots and it leaks user's information with attacker's command by attacking specified IP range. This paper will discuss an access method and a movement process by analyzing shadowbot which is a kind of a malignant Bot and will suggest possible countermeasure. This study has two distinct features. First, we analyze malignant Bot by analyzing tools such as VM ware. Second, we formulate a hypothesis and will suggest possible countermeasure through analyzing malignant Bot's access method and movement. Performance evaluation will be conducted by applying possible countermeasure to see if it can prevent attacks from malignant bot.

An Efficient Detecting Scheme of Web-based Attacks through Monitoring HTTP Outbound Traffics (HTTP Outbound Traffic 감시를 통한 웹 공격의 효율적 탐지 기법)

  • Choi, Byung-Ha;Choi, Sung-Kyo;Cho, Kyung-San
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.1
    • /
    • pp.125-132
    • /
    • 2011
  • A hierarchical Web Security System, which is a solution to various web-based attacks, seemingly is not able to keep up with the improvement of detoured or compound attacks. In this paper, we suggest an efficient detecting scheme for web-based attacks like Malware, XSS, Creating Webshell, URL Spoofing, and Exposing Private Information through monitoring HTTP outbound traffics in real time. Our proposed scheme detects web-based attacks by comparing the outbound traffics with the signatures of HTML tag or Javascript created by the attacks. Through the verification analysis under the real-attacked environment, we show that our scheme installed in a hierarchical web security system has superior detection capability for detoured web-based attacks.

A Scalable Distributed Worm Detection and Prevention Model using Lightweight Agent (경량화 에이전트를 이용한 확장성 있는 분산 웜 탐지 및 방지 모델)

  • Park, Yeon-Hee;Kim, Jong-Uk;Lee, Seong-Uck;Kim, Chol-Min;Tariq, Usman;Hong, Man-Pyo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.5
    • /
    • pp.517-521
    • /
    • 2008
  • A worm is a malware that propagates quickly from host to host without any human intervention. Need of early worm detection has changed research paradigm from signature based worm detection to the behavioral based detection. To increase effectiveness of proposed solution, in this paper we present mechanism of detection and prevention of worm in distributed fashion. Furthermore, to minimize the worm destruction; upon worm detection we propagate the possible attack aleγt to neighboring nodes in secure and organized manner. Considering worm behavior, our proposed mechanism detects worm cycles and infection chains to detect the sudden change in network performance. And our model neither needs to maintain a huge database of signatures nor needs to have too much computing power, that is why it is very light and simple. So, our proposed scheme is suitable for the ubiquitous environment. Simulation results illustrate better detection and prevention which leads to the reduction of infection rate.