• Title/Summary/Keyword: Malware Detection PE Header

Search Result 3, Processing Time 0.017 seconds

PE Header Characteristics Analysis Technique for Malware Detection (악성프로그램 탐지를 위한 PE헤더 특성 분석 기술)

  • Choi, Yang-Seo;Kim, Ik-Kyun;Oh, Jin-Tae;Ryu, Jae-Cheol
    • Convergence Security Journal
    • /
    • v.8 no.2
    • /
    • pp.63-70
    • /
    • 2008
  • In order not to make the malwares be easily analyzed, the hackers apply various anti-reversing and obfuscation techniques to the malwares. However, as the more anti-revering techniques are applied to the malwares the more abnormal characteristics in the PE file's header which are not shown in the normal PE file, could be observed. In this letter, a new malware detection technique is proposed based on this observation. For the malware detection, we define the Characteristics Vector(CV) which can represent the characteristics of a PE file's header. In the learning phase, we calculate the average CV(ACV) of malwares(ACVM) and normal files(ACVN). To detect the malwares we calculate the 2 Weighted Euclidean Distances(WEDs) from a file's CV to ACVs and they are used to decide whether the file is a malware or not. The proposed technique is very fast and detection rate is fairly high, so it could be applied to the network based attack detection and prevention devices. Moreover, this technique is could be used to detect the unknown malwares because it does not utilize a signature but the malware's characteristics.

  • PDF

A Chi-Square-Based Decision for Real-Time Malware Detection Using PE-File Features

  • Belaoued, Mohamed;Mazouzi, Smaine
    • Journal of Information Processing Systems
    • /
    • v.12 no.4
    • /
    • pp.644-660
    • /
    • 2016
  • The real-time detection of malware remains an open issue, since most of the existing approaches for malware categorization focus on improving the accuracy rather than the detection time. Therefore, finding a proper balance between these two characteristics is very important, especially for such sensitive systems. In this paper, we present a fast portable executable (PE) malware detection system, which is based on the analysis of the set of Application Programming Interfaces (APIs) called by a program and some technical PE features (TPFs). We used an efficient feature selection method, which first selects the most relevant APIs and TPFs using the chi-square ($KHI^2$) measure, and then the Phi (${\varphi}$) coefficient was used to classify the features in different subsets, based on their relevance. We evaluated our method using different classifiers trained on different combinations of feature subsets. We obtained very satisfying results with more than 98% accuracy. Our system is adequate for real-time detection since it is able to categorize a file (Malware or Benign) in 0.09 seconds.

Stacked Autoencoder Based Malware Feature Refinement Technology Research (Stacked Autoencoder 기반 악성코드 Feature 정제 기술 연구)

  • Kim, Hong-bi;Lee, Tae-jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.4
    • /
    • pp.593-603
    • /
    • 2020
  • The advent of malicious code has increased exponentially due to the spread of malicious code generation tools in accordance with the development of the network, but there is a limit to the response through existing malicious code detection methods. According to this situation, a machine learning-based malicious code detection method is evolving, and in this paper, the feature of data is extracted from the PE header for machine-learning-based malicious code detection, and then it is used to automate the malware through autoencoder. Research on how to extract the indicated features and feature importance. In this paper, 549 features composed of information such as DLL/API that can be identified from PE files that are commonly used in malware analysis are extracted, and autoencoder is used through the extracted features to improve the performance of malware detection in machine learning. It was proved to be successful in providing excellent accuracy and reducing the processing time by 2 times by effectively extracting the features of the data by compressively storing the data. The test results have been shown to be useful for classifying malware groups, and in the future, a classifier such as SVM will be introduced to continue research for more accurate malware detection.