• Title/Summary/Keyword: Malicious Traffic Detection

Search Result 66, Processing Time 0.027 seconds

Assessing Convolutional Neural Network based Malicious Network Traffic Detection Methods (컨볼루션 신경망 기반 유해 네트워크 트래픽 탐지 기법 평가)

  • Yeom, Sungwoong;Nguyen, Van-Quyet;Kim, Kyungbaek
    • KNOM Review
    • /
    • v.22 no.1
    • /
    • pp.20-29
    • /
    • 2019
  • Recently, various machine learning based traffic classification methods are focused on detecting malicious network traffic. In this paper, convolutional neural network based malicious network traffic classification method is introduced and its performance is evaluated. In order to utilize the convolutional neural network which is excellent in analyzing images, a image transform method from important information of network traffic to a standardized image is proposed, and the transformed images are used as learning input of a CNN network traffic classifier. By using the real network traffic dataset, the proposed image transform method and CNN based network traffic classification method are evaluated. Especially, under various configurations of CNN, the performance of the proposed method is evaluated.

A Study on the Network Traffic-based Realtime Detection of the Malicious Links (네트워크 트래픽 기반의 실시간 악성링크 탐지에 관한 연구)

  • Kim, Hyo-Nam
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.07a
    • /
    • pp.305-306
    • /
    • 2016
  • 최근에 게임 플레이어들을 노리는 악성코드가 발견돼 사용자들의 주의가 필요하다. 게임 플레이어를 노리는 악성코드는 이전부터 존재해왔지만 이번에 발견된 악성코드는 게임 콘텐츠로 위장한 사례로, 직.간접적으로 게임을 즐기는 불특정 다수를 대상으로 하고 있다. 본 논문에서는 게임 콘텐츠를 위장하여 악성코드를 이용한 사이버 공격에 대한 사전 차단을 위하여 악성코드 탐지엔진에서 수집된 트래픽 정보로부터 악성링크를 판단할 수 있는 실시간 악성링크 탐지 기능을 제안한다.

  • PDF

Detect H1TP Tunnels Using Support Vector Machines (SVM을 이용한 HTTP 터널링 검출)

  • He, Dengke;Nyang, Dae-Hun;Lee, Kyung-Hee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.21 no.3
    • /
    • pp.45-56
    • /
    • 2011
  • Hyper Text Transfer Protocol(HTTP) is widely used in nearly every network when people access web pages, therefore HTTP traffic is usually allowed by local security policies to pass though firewalls and other gateway security devices without examination. However this characteristic can be used by malicious people. With the help of HTTP tunnel applications, malicious people can transmit data within HTTP in order to circumvent local security policies. Thus it is quite important to distinguish between regular HTTP traffic and tunneled HTTP traffic. Our work of HTTP tunnel detection is based on Support Vector Machines. The experimental results show the high accuracy of HTTP tunnel detection. Moreover, being trained once, our work of HTTP tunnel detection can be applied to other places without training any more.

Study of The Abnormal Traffic Detection Technique Using Forecasting Model Based Trend Model (추세 모형 기반의 예측 모델을 이용한 비정상 트래픽 탐지 방법에 관한 연구)

  • Jang, Sang-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.5256-5262
    • /
    • 2014
  • Recently, Distributed Denial of Service (DDoS) attacks, such as spreading malicious code, cyber-terrorism, have occurred in government agencies, the press and the financial sector. DDoS attacks are the simplest Internet-based infringement attacks techniques that have fatal consequences. DDoS attacks have caused bandwidth consumption at the network layer. These attacks are difficult to detect defend against because the attack packets are not significantly different from normal traffic. Abnormal traffic is threatening the stability of the network. Therefore, the abnormal traffic by generating indications will need to be detected in advance. This study examined the abnormal traffic detection technique using a forecasting model-based trend model.

Malicious Traffic Detection Using K-means (K-평균 클러스터링을 이용한 네트워크 유해트래픽 탐지)

  • Shin, Dong Hyuk;An, Kwang Kue;Choi, Sung Chune;Choi, Hyoung-Kee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.2
    • /
    • pp.277-284
    • /
    • 2016
  • Various network attacks such as DDoS(Distributed Denial of service) and orm are one of the biggest problems in the modern society. These attacks reduce the quality of internet service and caused the cyber crime. To solve the above problem, signature based IDS(Intrusion Detection System) has been developed by network vendors. It has a high detection rate by using database of previous attack signatures or known malicious traffic pattern. However, signature based IDS have the fatal weakness that the new types of attacks can not be detected. The reason is signature depend on previous attack signatures. In this paper, we propose a k-means clustering based malicious traffic detection method to complement the problem of signature IDS. In order to demonstrate efficiency of the proposed method, we apply the bayesian theorem.

Behavior based Routing Misbehavior Detection in Wireless Sensor Networks

  • Terence, Sebastian;Purushothaman, Geethanjali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5354-5369
    • /
    • 2019
  • Sensor networks are deployed in unheeded environment to monitor the situation. In view of the unheeded environment and by the nature of their communication channel sensor nodes are vulnerable to various attacks most commonly malicious packet dropping attacks namely blackhole, grayhole attack and sinkhole attack. In each of these attacks, the attackers capture the sensor nodes to inject fake details, to deceive other sensor nodes and to interrupt the network traffic by packet dropping. In all such attacks, the compromised node advertises itself with fake routing facts to draw its neighbor traffic and to plunge the data packets. False routing advertisement play vital role in deceiving genuine node in network. In this paper, behavior based routing misbehavior detection (BRMD) is designed in wireless sensor networks to detect false advertiser node in the network. Herein the sensor nodes are monitored by its neighbor. The node which attracts more neighbor traffic by fake routing advertisement and involves the malicious activities such as packet dropping, selective packet dropping and tampering data are detected by its various behaviors and isolated from the network. To estimate the effectiveness of the proposed technique, Network Simulator 2.34 is used. In addition packet delivery ratio, throughput and end-to-end delay of BRMD are compared with other existing routing protocols and as a consequence it is shown that BRMD performs better. The outcome also demonstrates that BRMD yields lesser false positive (less than 6%) and false negative (less than 4%) encountered in various attack detection.

Classification of HTTP Automated Software Communication Behavior Using a NoSQL Database

  • Tran, Manh Cong;Nakamura, Yasuhiro
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.2
    • /
    • pp.94-99
    • /
    • 2016
  • Application layer attacks have for years posed an ever-serious threat to network security, since they always come after a technically legitimate connection has been established. In recent years, cyber criminals have turned to fully exploiting the web as a medium of communication to launch a variety of forbidden or illicit activities by spreading malicious automated software (auto-ware) such as adware, spyware, or bots. When this malicious auto-ware infects a network, it will act like a robot, mimic normal behavior of web access, and bypass the network firewall or intrusion detection system. Besides that, in a private and large network, with huge Hypertext Transfer Protocol (HTTP) traffic generated each day, communication behavior identification and classification of auto-ware is a challenge. In this paper, based on a previous study, analysis of auto-ware communication behavior, and with the addition of new features, a method for classification of HTTP auto-ware communication is proposed. For that, a Not Only Structured Query Language (NoSQL) database is applied to handle large volumes of unstructured HTTP requests captured every day. The method is tested with real HTTP traffic data collected through a proxy server of a private network, providing good results in the classification and detection of suspicious auto-ware web access.

Feature Selection with PCA based on DNS Query for Malicious Domain Classification (비정상도메인 분류를 위한 DNS 쿼리 기반의 주성분 분석을 이용한 성분추출)

  • Lim, Sun-Hee;Cho, Jaeik;Kim, Jong-Hyun;Lee, Byung Gil
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.1 no.1
    • /
    • pp.55-60
    • /
    • 2012
  • Recent botnets are widely using the DNS services at the connection of C&C server in order to evade botnet's detection. It is necessary to study on DNS analysis in order to counteract anomaly-based technique using the DNS. This paper studies collection of DNS traffic for experimental data and supervised learning for DNS traffic-based malicious domain classification such as query of domain name corresponding to C&C server from zombies. Especially, this paper would aim to determine significant features of DNS-based classification system for malicious domain extraction by the Principal Component Analysis(PCA).

Detecting Cyber Threats Domains Based on DNS Traffic (DNS 트래픽 기반의 사이버 위협 도메인 탐지)

  • Lim, Sun-Hee;Kim, Jong-Hyun;Lee, Byung-Gil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37B no.11
    • /
    • pp.1082-1089
    • /
    • 2012
  • Recent malicious attempts in Cyber space are intended to emerge national threats such as Suxnet as well as to get financial benefits through a large pool of comprised botnets. The evolved botnets use the Domain Name System(DNS) to communicate with the C&C server and zombies. DNS is one of the core and most important components of the Internet and DNS traffic are continually increased by the popular wireless Internet service. On the other hand, domain names are popular for malicious use. This paper studies on DNS-based cyber threats domain detection by data classification based on supervised learning. Furthermore, the developed cyber threats domain detection system using DNS traffic analysis provides collection, analysis, and normal/abnormal domain classification of huge amounts of DNS data.

A Probabilistic Sampling Method for Efficient Flow-based Analysis

  • Jadidi, Zahra;Muthukkumarasamy, Vallipuram;Sithirasenan, Elankayer;Singh, Kalvinder
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.818-825
    • /
    • 2016
  • Network management and anomaly detection are challenges in high-speed networks due to the high volume of packets that has to be analysed. Flow-based analysis is a scalable method which reduces the high volume of network traffic by dividing it into flows. As sampling methods are extensively used in flow generators such as NetFlow, the impact of sampling on the performance of flow-based analysis needs to be investigated. Monitoring using sampled traffic is a well-studied research area, however, the impact of sampling on flow-based anomaly detection is a poorly researched area. This paper investigates flow sampling methods and shows that these methods have negative impact on flow-based anomaly detection. Therefore, we propose an efficient probabilistic flow sampling method that can preserve flow traffic distribution. The proposed sampling method takes into account two flow features: Destination IP address and octet. The destination IP addresses are sampled based on the number of received bytes. Our method provides efficient sampled traffic which has the required traffic features for both flow-based anomaly detection and monitoring. The proposed sampling method is evaluated using a number of generated flow-based datasets. The results show improvement in preserved malicious flows.