Recently, various machine learning based traffic classification methods are focused on detecting malicious network traffic. In this paper, convolutional neural network based malicious network traffic classification method is introduced and its performance is evaluated. In order to utilize the convolutional neural network which is excellent in analyzing images, a image transform method from important information of network traffic to a standardized image is proposed, and the transformed images are used as learning input of a CNN network traffic classifier. By using the real network traffic dataset, the proposed image transform method and CNN based network traffic classification method are evaluated. Especially, under various configurations of CNN, the performance of the proposed method is evaluated.
Proceedings of the Korean Society of Computer Information Conference
/
2016.07a
/
pp.305-306
/
2016
최근에 게임 플레이어들을 노리는 악성코드가 발견돼 사용자들의 주의가 필요하다. 게임 플레이어를 노리는 악성코드는 이전부터 존재해왔지만 이번에 발견된 악성코드는 게임 콘텐츠로 위장한 사례로, 직.간접적으로 게임을 즐기는 불특정 다수를 대상으로 하고 있다. 본 논문에서는 게임 콘텐츠를 위장하여 악성코드를 이용한 사이버 공격에 대한 사전 차단을 위하여 악성코드 탐지엔진에서 수집된 트래픽 정보로부터 악성링크를 판단할 수 있는 실시간 악성링크 탐지 기능을 제안한다.
Journal of the Korea Institute of Information Security & Cryptology
/
v.21
no.3
/
pp.45-56
/
2011
Hyper Text Transfer Protocol(HTTP) is widely used in nearly every network when people access web pages, therefore HTTP traffic is usually allowed by local security policies to pass though firewalls and other gateway security devices without examination. However this characteristic can be used by malicious people. With the help of HTTP tunnel applications, malicious people can transmit data within HTTP in order to circumvent local security policies. Thus it is quite important to distinguish between regular HTTP traffic and tunneled HTTP traffic. Our work of HTTP tunnel detection is based on Support Vector Machines. The experimental results show the high accuracy of HTTP tunnel detection. Moreover, being trained once, our work of HTTP tunnel detection can be applied to other places without training any more.
Journal of the Korea Academia-Industrial cooperation Society
/
v.15
no.8
/
pp.5256-5262
/
2014
Recently, Distributed Denial of Service (DDoS) attacks, such as spreading malicious code, cyber-terrorism, have occurred in government agencies, the press and the financial sector. DDoS attacks are the simplest Internet-based infringement attacks techniques that have fatal consequences. DDoS attacks have caused bandwidth consumption at the network layer. These attacks are difficult to detect defend against because the attack packets are not significantly different from normal traffic. Abnormal traffic is threatening the stability of the network. Therefore, the abnormal traffic by generating indications will need to be detected in advance. This study examined the abnormal traffic detection technique using a forecasting model-based trend model.
The Journal of Korean Institute of Communications and Information Sciences
/
v.41
no.2
/
pp.277-284
/
2016
Various network attacks such as DDoS(Distributed Denial of service) and orm are one of the biggest problems in the modern society. These attacks reduce the quality of internet service and caused the cyber crime. To solve the above problem, signature based IDS(Intrusion Detection System) has been developed by network vendors. It has a high detection rate by using database of previous attack signatures or known malicious traffic pattern. However, signature based IDS have the fatal weakness that the new types of attacks can not be detected. The reason is signature depend on previous attack signatures. In this paper, we propose a k-means clustering based malicious traffic detection method to complement the problem of signature IDS. In order to demonstrate efficiency of the proposed method, we apply the bayesian theorem.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.11
/
pp.5354-5369
/
2019
Sensor networks are deployed in unheeded environment to monitor the situation. In view of the unheeded environment and by the nature of their communication channel sensor nodes are vulnerable to various attacks most commonly malicious packet dropping attacks namely blackhole, grayhole attack and sinkhole attack. In each of these attacks, the attackers capture the sensor nodes to inject fake details, to deceive other sensor nodes and to interrupt the network traffic by packet dropping. In all such attacks, the compromised node advertises itself with fake routing facts to draw its neighbor traffic and to plunge the data packets. False routing advertisement play vital role in deceiving genuine node in network. In this paper, behavior based routing misbehavior detection (BRMD) is designed in wireless sensor networks to detect false advertiser node in the network. Herein the sensor nodes are monitored by its neighbor. The node which attracts more neighbor traffic by fake routing advertisement and involves the malicious activities such as packet dropping, selective packet dropping and tampering data are detected by its various behaviors and isolated from the network. To estimate the effectiveness of the proposed technique, Network Simulator 2.34 is used. In addition packet delivery ratio, throughput and end-to-end delay of BRMD are compared with other existing routing protocols and as a consequence it is shown that BRMD performs better. The outcome also demonstrates that BRMD yields lesser false positive (less than 6%) and false negative (less than 4%) encountered in various attack detection.
IEIE Transactions on Smart Processing and Computing
/
v.5
no.2
/
pp.94-99
/
2016
Application layer attacks have for years posed an ever-serious threat to network security, since they always come after a technically legitimate connection has been established. In recent years, cyber criminals have turned to fully exploiting the web as a medium of communication to launch a variety of forbidden or illicit activities by spreading malicious automated software (auto-ware) such as adware, spyware, or bots. When this malicious auto-ware infects a network, it will act like a robot, mimic normal behavior of web access, and bypass the network firewall or intrusion detection system. Besides that, in a private and large network, with huge Hypertext Transfer Protocol (HTTP) traffic generated each day, communication behavior identification and classification of auto-ware is a challenge. In this paper, based on a previous study, analysis of auto-ware communication behavior, and with the addition of new features, a method for classification of HTTP auto-ware communication is proposed. For that, a Not Only Structured Query Language (NoSQL) database is applied to handle large volumes of unstructured HTTP requests captured every day. The method is tested with real HTTP traffic data collected through a proxy server of a private network, providing good results in the classification and detection of suspicious auto-ware web access.
Lim, Sun-Hee;Cho, Jaeik;Kim, Jong-Hyun;Lee, Byung Gil
KIPS Transactions on Computer and Communication Systems
/
v.1
no.1
/
pp.55-60
/
2012
Recent botnets are widely using the DNS services at the connection of C&C server in order to evade botnet's detection. It is necessary to study on DNS analysis in order to counteract anomaly-based technique using the DNS. This paper studies collection of DNS traffic for experimental data and supervised learning for DNS traffic-based malicious domain classification such as query of domain name corresponding to C&C server from zombies. Especially, this paper would aim to determine significant features of DNS-based classification system for malicious domain extraction by the Principal Component Analysis(PCA).
The Journal of Korean Institute of Communications and Information Sciences
/
v.37B
no.11
/
pp.1082-1089
/
2012
Recent malicious attempts in Cyber space are intended to emerge national threats such as Suxnet as well as to get financial benefits through a large pool of comprised botnets. The evolved botnets use the Domain Name System(DNS) to communicate with the C&C server and zombies. DNS is one of the core and most important components of the Internet and DNS traffic are continually increased by the popular wireless Internet service. On the other hand, domain names are popular for malicious use. This paper studies on DNS-based cyber threats domain detection by data classification based on supervised learning. Furthermore, the developed cyber threats domain detection system using DNS traffic analysis provides collection, analysis, and normal/abnormal domain classification of huge amounts of DNS data.
Network management and anomaly detection are challenges in high-speed networks due to the high volume of packets that has to be analysed. Flow-based analysis is a scalable method which reduces the high volume of network traffic by dividing it into flows. As sampling methods are extensively used in flow generators such as NetFlow, the impact of sampling on the performance of flow-based analysis needs to be investigated. Monitoring using sampled traffic is a well-studied research area, however, the impact of sampling on flow-based anomaly detection is a poorly researched area. This paper investigates flow sampling methods and shows that these methods have negative impact on flow-based anomaly detection. Therefore, we propose an efficient probabilistic flow sampling method that can preserve flow traffic distribution. The proposed sampling method takes into account two flow features: Destination IP address and octet. The destination IP addresses are sampled based on the number of received bytes. Our method provides efficient sampled traffic which has the required traffic features for both flow-based anomaly detection and monitoring. The proposed sampling method is evaluated using a number of generated flow-based datasets. The results show improvement in preserved malicious flows.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.