References
- M. Roesch, "Snort-Lightweight intrusion detection for networks," in Proc. USENIX LISA 99, vol. 99, no. 1, Washington, USA, Nov. 1999.
- V. Paxon, "Bro: A system for detecting network intruders in real-time," in Proc. 7th USENIX Security Symp., San Antonio, TX, Jan. 1998.
- S.-H. Yoon and M.-S. Kim, "Behavior based signature extraction method for internet application traffic identification," J. KICS, vol. 38, no. 5, pp. 368-376, May 2013.
- K.-S. Shim, S.-H. Yoon, S.-K. Lee, S.-M. Kim, W.-S. Jung, and M.-S. Kim, "Automatic generation of snort content rule for network traffic analysis," J. KICS, vol. 40, no. 4, pp. 666-672, Apr. 2015. https://doi.org/10.7840/kics.2015.40.4.666
- W.-S. Jung, J.-S. Park, and M.-S. Kim, "Performance improvement of traffic identification by categorizing signature matching type," J. KICS, vol. 40, no. 7, pp. 1339-1346, Jul. 2015. https://doi.org/10.7840/kics.2015.40.7.1339
- L. I. Smith, A tutorials on Principal Components Analysis, Retrieved Oct., 14, 2015, from http://www.cs.otago.ac.nz.
- O. Carugo and F. Eisenhaber, Data Mining Techniques for the Life Sciences, Humana Press, vol. 609, 2010.
- E. Philippe and C. Agon, "Time series data mining," ACM Computing Surveys (CSUR), vol 45, no. 12, pp. 1-34, Nov. 2012.
- M. E. Celebi, H. A. Kingravi, and P. A. Vela, "A comparative study of efficient initialization methods for the k-means clustering algorithm," J. Elsevier, vol. 40, no. 1, pp. 200-210, Jan. 2013.
- A. Lakhina, M. Crovella, and C. Diot, "Diagnosing network-wide traffic anomalies," SIGCOMM '04, pp. 219-230, Portland, USA, Aug. 2004.
- H. Ringberg, A. Soule, J. Rexford, and C. Diot, "Sensitivity of PCA for traffic anomaly detection," SIGMETRICS '07, pp. 109-120, San Diego, USA, Jun. 2007.
- L. Khan, M. Awad, and B. Thuraisingham, "A new intrusion detection system using support vector machines and hierarchical clustering," J. VLDB, vol. 16, no.4, pp. 507-521, Oct. 2007. https://doi.org/10.1007/s00778-006-0002-5
- T. Shon, Y. Kim, C. Lee, and J. Moon, "A machine learning framework for network anomaly detection using SVM and Ga," IAW '05, pp. 176-183, New York, USA, Jun. 2005.
- J. D. Brutlag, "Aberrant behavior detection in time series for network monitoring," in Proc. LISA, vol. 14, pp. 139-146, New Orleans, USA, Dec. 2000.
- G. Münz, S. Li, and G. Carle, "Traffic anomaly detection using k-means clustering," GI/ITG Workshop MMBnet 2007, Hamburg, Germany, Sept. 2007.
- K. Lee, J. Kim, K. H. Kwon, Y. Han, and S. Kim, "DDoS attack detection method using cluster analysis," J. Elsevier, vol. 34, no. 3, pp. 1659-1665, Apr. 2008.
- R. Braga, E. Mota, and A. Passito, "Lightweight DDoS flooding attack detection using NOX/OpenFlow," 2010 IEEE LCN, pp. 408-415, Denver, CO, Oct. 2015.
- G. R. Zargar and P. Kabiri, "Advances in data mining: Applications and theoretical aspects," in Proc. 10th Ind. Conf., ICDM 2010, Berlin, Germany, Jul. 2010.
- F. Silveira, C. Diot, N. Taft, and R. Govindan, "ASTUTE: Detecting a different class of traffic anomalies," in Proc. ACM SIGCOMM '10, pp. 267-278, New Delhi, India, Aug. 2010.
- http://data.caida.org
- http://mawi.nezu.wide.ad.jp
Cited by
- 풍향과 풍속의 특징을 이용한 SVR기반 단기풍력발전량 예측 vol.42, pp.5, 2016, https://doi.org/10.7840/kics.2017.42.5.1085
- 단어 임베딩(Word Embedding) 기법을 적용한 키워드 중심의 사회적 이슈 도출 연구: 장애인 관련 뉴스 기사를 중심으로 vol.35, pp.1, 2016, https://doi.org/10.3743/kosim.2018.35.1.231
- K-Means 군집모형과 계층적 군집(교차효율성 메트릭스에 의한 평균연결법, Ward법)모형 및 혼합모형을 이용한 컨테이너항만의 클러스터링 측정에 대한 실증적 비교 및 검증에 관한 연구 vol.34, pp.3, 2016, https://doi.org/10.38121/kpea.2018.09.34.3.17
- Intrusion Detection System in the Advanced Metering Infrastructure: A Cross-Layer Feature-Fusion CNN-LSTM-Based Approach vol.21, pp.2, 2016, https://doi.org/10.3390/s21020626
- Analysis of Research Trends Based on Text Mining in the Journal of Korean Society of Environmental Engineering vol.43, pp.2, 2016, https://doi.org/10.4491/ksee.2021.43.2.101