• Title/Summary/Keyword: Malicious Application

Search Result 192, Processing Time 0.028 seconds

Normal and Malicious Application Pattern Analysis using System Call Event on Android Mobile Devices for Similarity Extraction (안드로이드 모바일 정상 및 악성 앱 시스템 콜 이벤트 패턴 분석을 통한 유사도 추출 기법)

  • Ham, You Joung;Lee, Hyung-Woo
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.125-139
    • /
    • 2013
  • Distribution of malicious applications developed by attackers is increasing along with general normal applications due to the openness of the Android-based open market. Mechanism that allows more accurate ways to distinguish normal apps and malicious apps for common mobile devices should be developed in order to reduce the damage caused by the rampant malicious applications. This paper analysed the normal event pattern from the most highly used game apps in the Android open market to analyse the event pattern from normal apps and malicious apps of mobile devices that are based on the Android platform, and analysed the malicious event pattern from the malicious apps and the disguising malicious apps in the form of a game app among 1260 malware samples distributed by Android MalGenome Project. As described, experiment that extracts normal app and malicious app events was performed using Strace, the Linux-based system call extraction tool, targeting normal apps and malicious apps on Android-based mobile devices. Relevance analysis for each event set was performed on collected events that occurred when normal apps and malicious apps were running. This paper successfully extracted event similarity through this process of analyzing the event occurrence characteristics, pattern and distribution on each set of normal apps and malicious apps, and lastly suggested a mechanism that determines whether any given app is malicious.

Research on countermeasures against malicious file upload attacks (악성 파일 업로드 공격 대응방안 연구)

  • Kim, Taekyung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.2
    • /
    • pp.53-59
    • /
    • 2020
  • Malicious file upload attacks mean that the attacker to upload or transfer files of dangerous types that can be automatically processed within the web server's environment. Uploaded file content can include exploits, malware and malicious scripts. An attacker can user malicious content to manipulate the application behavior. As a method of detecting a malicious file upload attack, it is generally used to find a file type by detecting a file extension or a signature of the file. However, this type of file type detection has the disadvantage that it can not detect files that are not encoded with a specific program, such as PHP files. Therefore, in this paper, research was conducted on how to detect and block any program by using essential commands or variable names used in the corresponding program when writing a specific program. The performance evaluation results show that it detected specific files effectively using the suggested method.

Android malicious code Classification using Deep Belief Network

  • Shiqi, Luo;Shengwei, Tian;Long, Yu;Jiong, Yu;Hua, Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.454-475
    • /
    • 2018
  • This paper presents a novel Android malware classification model planned to classify and categorize Android malicious code at Drebin dataset. The amount of malicious mobile application targeting Android based smartphones has increased rapidly. In this paper, Restricted Boltzmann Machine and Deep Belief Network are used to classify malware into families of Android application. A texture-fingerprint based approach is proposed to extract or detect the feature of malware content. A malware has a unique "image texture" in feature spatial relations. The method uses information on texture image extracted from malicious or benign code, which are mapped to uncompressed gray-scale according to the texture image-based approach. By studying and extracting the implicit features of the API call from a large number of training samples, we get the original dynamic activity features sets. In order to improve the accuracy of classification algorithm on the features selection, on the basis of which, it combines the implicit features of the texture image and API call in malicious code, to train Restricted Boltzmann Machine and Back Propagation. In an evaluation with different malware and benign samples, the experimental results suggest that the usability of this method---using Deep Belief Network to classify Android malware by their texture images and API calls, it detects more than 94% of the malware with few false alarms. Which is higher than shallow machine learning algorithm clearly.

DDoS Attack Application Detection Method with Android Logging System (안드로이드 로깅 시스템을 이용한 DDoS 공격 애플리케이션 탐지 기법)

  • Choi, Seul-Ki;Hong, Min;Kwak, Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.24 no.6
    • /
    • pp.1215-1224
    • /
    • 2014
  • Various research was done to protect user's private data from malicious application which expose user's private data and abuse exposed data. However, a new type of malicious application were appeared. And these malicious applications use a smart phone as a new tools to perform secondary attack. Therefore, in this paper, we propose a method to detect the DDoS attack application installed inside the mobile device using the Android logging system.

A Method to Collect Trusted Processes for Application Whitelisting in macOS (macOS 운영체제에서 화이트리스트 구축을 위한 신뢰 프로세스 수집 연구)

  • Youn, Jung-moo;Ryu, Jae-cheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.2
    • /
    • pp.397-405
    • /
    • 2018
  • Blacklist-based tools are most commonly used to effectively detect suspected malicious processes. The blacklist-based tool compares the malicious code extracted from the existing malicious code with the malicious code. Therefore, it is most effective to detect known malicious codes, but there is a limit to detecting malicious code variants. In order to solve this problem, the necessity of a white list-based tool, which is the opposite of black list, has emerged. Whitelist-based tools do not extract features of malicious code processes, but rather collect reliable processes and verify that the process that checks them is a trusted process. In other words, if malicious code is created using a new vulnerability or if variant malicious code appears, it is not in the list of trusted processes, so it can effectively detect malicious code. In this paper, we propose a method for effectively building a whitelist through research that collects reliable processes in the macOS operating system.

Optimal Machine Learning Model for Detecting Normal and Malicious Android Apps (안드로이드 정상 및 악성 앱 판별을 위한 최적합 머신러닝 기법)

  • Lee, Hyung-Woo;Lee, HanSeong
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.2
    • /
    • pp.1-10
    • /
    • 2020
  • The mobile application based on the Android platform is simple to decompile, making it possible to create malicious applications similar to normal ones, and can easily distribute the created malicious apps through the Android third party app store. In this case, the Android malicious application in the smartphone causes several problems such as leakage of personal information in the device, transmission of premium SMS, and leakage of location information and call records. Therefore, it is necessary to select a optimal model that provides the best performance among the machine learning techniques that have published recently, and provide a technique to automatically identify malicious Android apps. Therefore, in this paper, after adopting the feature engineering to Android apps on official test set, a total of four performance evaluation experiments were conducted to select the machine learning model that provides the optimal performance for Android malicious app detection.

An Efficient PSI-CA Protocol Under the Malicious Model

  • Jingjie Liu;Suzhen Cao;Caifen Wang;Chenxu Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.720-737
    • /
    • 2024
  • Private set intersection cardinality (PSI-CA) is a typical problem in the field of secure multi-party computation, which enables two parties calculate the cardinality of intersection securely without revealing any information about their sets. And it is suitable for private data protection scenarios where only the cardinality of the set intersection needs to be calculated. However, most of the currently available PSI-CA protocols only meet the security under the semi-honest model and can't resist the malicious behaviors of participants. To solve the problems above, by the application of the variant of Elgamal cryptography and Bloom filter, we propose an efficient PSI-CA protocol with high security. We also present two new operations on Bloom filter called IBF and BIBF, which could further enhance the safety of private data. Using zero-knowledge proof to ensure the safety under malicious adversary model. Moreover, in order to minimize the error in the results caused by the false positive problem, we use Garbled Bloom Filter and key-value pair packing creatively and present an improved PSI-CA protocol. Through experimental comparison with several existing representative protocols, our protocol runs with linear time complexity and more excellent characters, which is more suitable for practical application scenarios.

A Study on Characteristic Analysis and Countermeasure of Malicious Web Site (악성코드 유포 사이트 특성 분석 및 대응방안 연구)

  • Kim, Hong-seok;Kim, In-seok
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.1
    • /
    • pp.93-103
    • /
    • 2019
  • Recently, malicious code distribution of ransomware through a web site based on a drive-by-download attack has resulted in service disruptions to the web site and damage to PC files for end users. Therefore, analyzing the characteristics of the target web site industry, distribution time, application type, and type of malicious code that is being exploited can predict and respond to the attacker's attack activities by analyzing the status and trend of malicious code sites. In this paper, we will examine the distribution of malicious codes to 3.43 million websites in Korea to draw out the characteristics of each detected landing site, exploit site, and distribution site, and discuss countermeasures.

The Detection of Android Malicious Apps Using Categories and Permissions (카테고리와 권한을 이용한 안드로이드 악성 앱 탐지)

  • Park, Jong-Chan;Baik, Namkyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.907-913
    • /
    • 2022
  • Approximately 70% of smartphone users around the world use Android operating system-based smartphones, and malicious apps targeting these Android platforms are constantly increasing. Google has provided "Google Play Protect" to respond to the increasing number of Android targeted malware, preventing malicious apps from being installed on smartphones, but many malicious apps are still normal. It threatens the smartphones of ordinary users registered in the Google Play store by disguising themselves as apps. However, most people rely on antivirus programs to detect malicious apps because the average user needs a great deal of expertise to check for malicious apps. Therefore, in this paper, we propose a method to classify unnecessary malicious permissions of apps by using only the categories and permissions that can be easily confirmed by the app, and to easily detect malicious apps through the classified permissions. The proposed method is compared and analyzed from the viewpoint of undiscovered rate and false positives with the "commercial malicious application detection program", and the performance level is presented.

A Study proposal for URL anomaly detection model based on classification algorithm (분류 알고리즘 기반 URL 이상 탐지 모델 연구 제안)

  • Hyeon Wuu Kim;Hong-Ki Kim;DongHwi Lee
    • Convergence Security Journal
    • /
    • v.23 no.5
    • /
    • pp.101-106
    • /
    • 2023
  • Recently, cyberattacks are increasing in social engineering attacks using intelligent and continuous phishing sites and hacking techniques using malicious code. As personal security becomes important, there is a need for a method and a solution for determining whether a malicious URL exists using a web application. In this paper, we would like to find out each feature and limitation by comparing highly accurate techniques for detecting malicious URLs. Compared to classification algorithm models using features such as web flat panel DB and based URL detection sites, we propose an efficient URL anomaly detection technique.