• 제목/요약/키워드: Malicious

검색결과 1,427건 처리시간 0.022초

Classifying Malicious Web Pages by Using an Adaptive Support Vector Machine

  • Hwang, Young Sup;Kwon, Jin Baek;Moon, Jae Chan;Cho, Seong Je
    • Journal of Information Processing Systems
    • /
    • 제9권3호
    • /
    • pp.395-404
    • /
    • 2013
  • In order to classify a web page as being benign or malicious, we designed 14 basic and 16 extended features. The basic features that we implemented were selected to represent the essential characteristics of a web page. The system heuristically combines two basic features into one extended feature in order to effectively distinguish benign and malicious pages. The support vector machine can be trained to successfully classify pages by using these features. Because more and more malicious web pages are appearing, and they change so rapidly, classifiers that are trained by old data may misclassify some new pages. To overcome this problem, we selected an adaptive support vector machine (aSVM) as a classifier. The aSVM can learn training data and can quickly learn additional training data based on the support vectors it obtained during its previous learning session. Experimental results verified that the aSVM can classify malicious web pages adaptively.

코드 삽입 기법을 이용한 알려지지 않은 악성 스크립트 탐지 (Detection Of Unknown Malicious Scripts using Code Insertion Technique)

  • 이성욱;방효찬;홍만표
    • 한국정보과학회논문지:정보통신
    • /
    • 제29권6호
    • /
    • pp.663-673
    • /
    • 2002
  • 서버 수준의 안티바이러스는 특정 도메인 내에 진입하는 악성코드를 진입점에서 감지하므로 모든 클라이언트를 완벽하게 통제하기 어려운 실제 상황에서 전자우편 서버 등에 유용하게 사용된다. 그러나, 알려지지 않은 악성 코드에 감지에 유용한 행위 감시 기법은 서버에 적용이 어려우므로, 현재의 서버용 안티바이러스들은 이미 알려진 악성 코드에 대한 시그너쳐 기반의 감지, 단순한 필터링 그리고 파일명 변경과 같은 기능만을 수행한다. 본 논문에서는 서버에서의 실행만으로 별도의 안티바이러스가 탑재되지 않은 클라이언트에서도 지속적인 행위 감시가 가능하도록 하는 악성 스크립트 감지 기법을 제안하고 그 구현에 관해 기술한다.

Trojan 예측을 위한 ESP 모델 구현 (ESP model for predictions Trojan)

  • 김종민;김민수;김귀남
    • 융합보안논문지
    • /
    • 제14권5호
    • /
    • pp.37-47
    • /
    • 2014
  • 악성코드 중 가장 많은 비율을 차지한 것은 트로이 목마이며, 트로이 목마의 경우 그 자체로 피해를 주는 형태가 주종을 이루었지만, 최근에는 백도어 방식으로 사용자 정보를 몰래 빼오는 형태가 많아지고 있으며, 트로이 목마의 특성을 갖고 있는 웜이나 바이러스가 증가하고 있는 추세이다. 웜의 확산 특징을 분석하기 위한 모델링 기법들이 제시되었지만 거시적인 분석만 가능하였고 특정 바이러스, 악성코드에 대해 예측하기는 한계점이 있다. 따라서 본 논문에서는 과거의 Trojan 데이터를 활용하여 미래의 Trojan 악성코드의 발생을 예측 할 수 있는 ESP모델을 제시하였다. 이 모델을 적용하여 얻어진 예측 값을 마코프 체인과 비교한 결과 제안한 모델이 기존 발생한 실제 빈도수와 유사한 값을 나타냄을 알 수 있었다.

악성코드 유포 사이트 특성 분석 및 대응방안 연구 (A Study on Characteristic Analysis and Countermeasure of Malicious Web Site)

  • 김홍석;김인석
    • 정보보호학회논문지
    • /
    • 제29권1호
    • /
    • pp.93-103
    • /
    • 2019
  • 최근 드라이브 바이 다운로드 공격 기반의 웹사이트를 통한 랜섬웨어 악성코드 유포로 인해 웹사이트 서비스 마비, 일반 이용자 PC 파일 손상 등의 피해가 발생하고 있다. 따라서 악성코드 경유지 및 유포지 사이트의 현황과 추이 파악을 통해 악성코드 유포의 공격 대상 웹사이트 업종, 유포 시간, 악용되는 어플리케이션 종류, 유포되는 악성 코드 유형에 대한 특성을 분석하는 것은 공격자의 공격활동을 예측하고 대응이 가능하다는 점에서 의미가 크다. 본 논문에서는 국내 343만개의 웹사이트를 대상으로 악성코드 유포여부를 점검하여 탐지된 악성코드 경유지 사이트, 익스플로잇 사이트, 악성코드 유포지 사이트별로 어떠한 특징들이 나타나는지를 도출하고, 이에 대한 대응방안을 고찰하고자 한다.

안드로이드 앱 악성행위 탐지를 위한 분석 기법 연구 (Android Application Analysis Method for Malicious Activity Detection)

  • 심원태;김종명;류재철;노봉남
    • 정보보호학회논문지
    • /
    • 제21권1호
    • /
    • pp.213-219
    • /
    • 2011
  • 스마트폰 시장이 급속하게 성장함에 따라 보안위협도 동시에 증가하고 있다. 가장 큰 스마트폰 보안위협 중 하나는 스마트폰 마켓에 안전성이 검증되지 않은 어플리케이션이 유통되고 있다는 점이다. 안드로이드 마켓의 경우 어플리케이션 검증을 수행하지 않아 악성 어플리케이션이 유통되고 있는 상황이다. 이와 같이 마켓을 통해 유포되는 악성 어플리케이션에 대응하기 위해서는 안드로이드 어플리케이선의 악성 행위 여부를 탐지할수 있는 기술이 필요하다. 본 논문에서는 안드로이드 어플리케이션의 악성행위를 탐지할 수 있는 분석 방법을 제안하고 구현내용을 소개하고자 한다.

Detection and Trust Evaluation of the SGN Malicious node

  • Al Yahmadi, Faisal;Ahmed, Muhammad R
    • International Journal of Computer Science & Network Security
    • /
    • 제21권6호
    • /
    • pp.89-100
    • /
    • 2021
  • Smart Grid Network (SGN) is a next generation electrical power network which digitizes the power distribution grid and achieves smart, efficient, safe and secure operations of the electricity. The backbone of the SGN is information communication technology that enables the SGN to get full control of network station monitoring and analysis. In any network where communication is involved security is essential. It has been observed from several recent incidents that an adversary causes an interruption to the operation of the networks which lead to the electricity theft. In order to reduce the number of electricity theft cases, companies need to develop preventive and protective methods to minimize the losses from this issue. In this paper, we have introduced a machine learning based SVM method that detects malicious nodes in a smart grid network. The algorithm collects data (electricity consumption/electric bill) from the nodes and compares it with previously obtained data. Support Vector Machine (SVM) classifies nodes into Normal or malicious nodes giving the statues of 1 for normal nodes and status of -1 for malicious -abnormal-nodes. Once the malicious nodes have been detected, we have done a trust evaluation based on the nodes history and recorded data. In the simulation, we have observed that our detection rate is almost 98% where the false alarm rate is only 2%. Moreover, a Trust value of 50 was achieved. As a future work, countermeasures based on the trust value will be developed to solve the problem remotely.

LSTM 딥러닝 알고리즘을 활용한 악성코드 API 분류 기술 연구 (Malware API Classification Technology Using LSTM Deep Learning Algorithm)

  • 김진하;박원형
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.259-261
    • /
    • 2022
  • 최근 악성코드는 한 가지의 기법이 아닌 여러 기법들이 조합되고 합쳐지고 중요한 부분만 추출되어 새로운 악성코드들이 제작되고 변형되면서 점차적으로 공격 패턴이 다양해지고 공격 대상 또한 다양해지고 있다. 특히, 기업들의 보안에서의 악성 행위로 인한 피해 사례는 시간이 지날수록 늘어나고 있다. 하지만 공격자들이 여러 악성코드를 조합하더라도 각 악성코드의 종류별로 API들은 반복적으로 사용되고 API들의 패턴들과 이름이 유사할 가능성이 높다. 그로 인해 본 논문은 악성코드에서 자주 사용되는 API의 패턴을 찾고 API의 의미와 유사도를 계산하여 어느 정도의 위험도가 있는지 판단하는 분류 기술을 제안한다.

  • PDF

Examining Malicious Online Comments from the Bystander Effect Perspective

  • Sodam Kim;Sumeet Gupta;So-Hyun Lee;Hee-Woong Kim
    • Asia pacific journal of information systems
    • /
    • 제31권1호
    • /
    • pp.1-16
    • /
    • 2021
  • Cyberbullying has become a social problem as malicious text messages and online comments among teenagers have increased in the late 2000s. Some serious reporting has attempted to impress on us the need to pay more attention to reducing malicious online content as a typical type of cyberbullying. Meanwhile, despite environmental changes that have made it easier to report perpetrators of such messages, it is often the case that the crime occurs in a public place and is tolerated. However, there is a growing tendency for people to exhibit the bystander effect, the problem of personal indifference to witnessing or knowing about crimes, but individuals do not offer any means of help to a victim when other people are present. This effect is rampant in the case of cybercrimes. This study aims to extract the motivations behind posting malicious comments through in-depth interviews and to suggest recommendations for relative issues by demonstrating how the bystander effect can be reduced using causal relationship diagrams of the system dynamics methodology. Hopefully, this work will contribute to a better understanding of factors that could cause a decrease in malicious online comments.

FAFS: A Fuzzy Association Feature Selection Method for Network Malicious Traffic Detection

  • Feng, Yongxin;Kang, Yingyun;Zhang, Hao;Zhang, Wenbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권1호
    • /
    • pp.240-259
    • /
    • 2020
  • Analyzing network traffic is the basis of dealing with network security issues. Most of the network security systems depend on the feature selection of network traffic data and the detection ability of malicious traffic in network can be improved by the correct method of feature selection. An FAFS method, which is short for Fuzzy Association Feature Selection method, is proposed in this paper for network malicious traffic detection. Association rules, which can reflect the relationship among different characteristic attributes of network traffic data, are mined by association analysis. The membership value of association rules are obtained by the calculation of fuzzy reasoning. The data features with the highest correlation intensity in network data sets are calculated by comparing the membership values in association rules. The dimension of data features are reduced and the detection ability of malicious traffic detection algorithm in network is improved by FAFS method. To verify the effect of malicious traffic feature selection by FAFS method, FAFS method is used to select data features of different dataset in this paper. Then, K-Nearest Neighbor algorithm, C4.5 Decision Tree algorithm and Naïve Bayes algorithm are used to test on the dataset above. Moreover, FAFS method is also compared with classical feature selection methods. The analysis of experimental results show that the precision and recall rate of malicious traffic detection in the network can be significantly improved by FAFS method, which provides a valuable reference for the establishment of network security system.

안드로이드 기반 모바일 단말 루팅 공격에 대한 이벤트 추출 기반 대응 기법 (Android based Mobile Device Rooting Attack Detection and Response Mechanism using Events Extracted from Daemon Processes)

  • 이형우
    • 정보보호학회논문지
    • /
    • 제23권3호
    • /
    • pp.479-490
    • /
    • 2013
  • 최근 삼성 갤럭시 노트 및 갤럭시 탭 10.1 등 안드로이드 기반 상용 모바일 단말을 대상으로 정상 어플리케이션인 것처럼 오픈 마켓에 배포된 악성 어플리케이션에 의한 공격들이 급증하고 있다. 공격자는 정상적인 어플리케이션에 악성코드를 삽입하여 상용 모바일 단말에 대한 루팅(Rooting) 공격을 수행한 후, 단말 내 저장된 사용자의 SMS, 전화번호부 등 개인정보와 공인인증서 등과 같은 금융정보를 외부 서버로 유출시키는 공격을 수행하게 된다. 따라서 상용 모바일 단말에 대한 악성코드 감염 여부를 판별하고 루팅 공격을 탐지 및 대응하기 위한 기법이 필요하다. 이에 본 논문에서는 안드로이드 기반 상용 모바일 단말에 대한 루팅 공격 기법에 대해 분석하고 이를 토대로 모니터링 데몬(Daemon)을 이용하여 상용 단말 내 공격 이벤트를 추출 및 수집하여 악성 어플리케이션으로 인한 공격에 능동적으로 대응하는 기법을 제시하였다.