• Title/Summary/Keyword: Malicious

Search Result 1,428, Processing Time 0.024 seconds

A Behavior based Detection for Malicious Code Using Obfuscation Technique (우회기법을 이용하는 악성코드 행위기반 탐지 방법)

  • Park Nam-Youl;Kim Yong-Min;Noh Bong-Nam
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.16 no.3
    • /
    • pp.17-28
    • /
    • 2006
  • The appearance of variant malicious codes using obfuscation techniques is accelerating the spread of malicious codes around the detection by a vaccine. n a system does not patch detection patterns for vulnerabilities and worms to the vaccine, it can be infected by the worms and malicious codes can be spreaded rapidly to other systems and networks in a few minute. Moreover, It is limited to the conventional pattern based detection and treatment for variants or new malicious codes. In this paper, we propose a method of behavior based detection by the static analysis, the dynamic analysis and the dynamic monitoring to detect a malicious code using obfuscation techniques with the PE compression. Also we show that dynamic monitoring can detect worms with the PE compression which accesses to important resources such as a registry, a cpu, a memory and files with the proposed method for similarity.

Design and Implementation of Web-browser based Malicious behavior Detection System(WMDS) (웹 브라우저 기반 악성행위 탐지 시스템(WMDS) 설계 및 구현)

  • Lee, Young-Wook;Jung, Dong-Jae;Jeon, Sang-Hun;Lim, Chae-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.3
    • /
    • pp.667-677
    • /
    • 2012
  • Vulnerable web applications have been the primary method used by the attackers to spread their malware to a large number of victims. Such attacks commonly make use of malicious links to remotely execute a rather advanced malicious code. The attackers often deploy malwares that utilizes unknown vulnerabilities so-called "zero-day vulnerabilities." The existing computer vaccines are mostly signature-based and thus are effective only against known attack patterns, but not capable of detecting zero-days attacks. To mitigate such limitations of the current solutions, there have been a numerous works that takes a behavior-based approach to improve detection against unknown malwares. However, behavior-based solutions arbitrarily introduced a several limitations that made them unsuitable for real-life situations. This paper proposes an advanced web browser based malicious behavior detection system that solves the problems and limitations of the previous approaches.

Detecting Spectre Malware Binary through Function Level N-gram Comparison (함수 단위 N-gram 비교를 통한 Spectre 공격 바이너리 식별 방법)

  • Kim, Moon-Sun;Yang, Hee-Dong;Kim, Kwang-Jun;Lee, Man-Hee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1043-1052
    • /
    • 2020
  • Signature-based malicious code detection methods share a common limitation; it is very hard to detect modified malicious codes or new malware utilizing zero-day vulnerabilities. To overcome this limitation, many studies are actively carried out to classify malicious codes using N-gram. Although they can detect malicious codes with high accuracy, it is difficult to identify malicious codes that uses very short codes such as Spectre. We propose a function level N-gram comparison algorithm to effectively identify the Spectre binary. To test the validity of this algorithm, we built N-gram data sets from 165 normal binaries and 25 malignant binaries. When we used Random Forest models, the model performance experiments identified Spectre malicious functions with 99.99% accuracy and its f1-score was 92%.

Using the fusion of spatial and temporal features for malicious video classification (공간과 시간적 특징 융합 기반 유해 비디오 분류에 관한 연구)

  • Jeon, Jae-Hyun;Kim, Se-Min;Han, Seung-Wan;Ro, Yong-Man
    • The KIPS Transactions:PartB
    • /
    • v.18B no.6
    • /
    • pp.365-374
    • /
    • 2011
  • Recently, malicious video classification and filtering techniques are of practical interest as ones can easily access to malicious multimedia contents through the Internet, IPTV, online social network, and etc. Considerable research efforts have been made to developing malicious video classification and filtering systems. However, the malicious video classification and filtering is not still being from mature in terms of reliable classification/filtering performance. In particular, the most of conventional approaches have been limited to using only the spatial features (such as a ratio of skin regions and bag of visual words) for the purpose of malicious image classification. Hence, previous approaches have been restricted to achieving acceptable classification and filtering performance. In order to overcome the aforementioned limitation, we propose new malicious video classification framework that takes advantage of using both the spatial and temporal features that are readily extracted from a sequence of video frames. In particular, we develop the effective temporal features based on the motion periodicity feature and temporal correlation. In addition, to exploit the best data fusion approach aiming to combine the spatial and temporal features, the representative data fusion approaches are applied to the proposed framework. To demonstrate the effectiveness of our method, we collect 200 sexual intercourse videos and 200 non-sexual intercourse videos. Experimental results show that the proposed method increases 3.75% (from 92.25% to 96%) for classification of sexual intercourse video in terms of accuracy. Further, based on our experimental results, feature-level fusion approach (for fusing spatial and temporal features) is found to achieve the best classification accuracy.

Android Malware Analysis Technology Research Based on Naive Bayes (Naive Bayes 기반 안드로이드 악성코드 분석 기술 연구)

  • Hwang, Jun-ho;Lee, Tae-jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.5
    • /
    • pp.1087-1097
    • /
    • 2017
  • As the penetration rate of smartphones increases, the number of malicious codes targeting smartphones is increasing. I 360 Security 's smartphone malware statistics show that malicious code increased 437 percent in the first quarter of 2016 compared to the fourth quarter of 2015. In particular, malicious applications, which are the main means of distributing malicious code on smartphones, are aimed at leakage of user information, data destruction, and money withdrawal. Often, it is operated by an API, which is an interface that allows you to control the functions provided by the operating system or programming language. In this paper, we propose a mechanism to detect malicious application based on the similarity of API pattern in normal application and malicious application by learning pattern of API in application derived from static analysis. In addition, we show a technique for improving the detection rate and detection rate for each label derived by using the corresponding mechanism for the sample data. In particular, in the case of the proposed mechanism, it is possible to detect when the API pattern of the new malicious application is similar to the previously learned patterns at a certain level. Future researches of various features of the application and applying them to this mechanism are expected to be able to detect new malicious applications of anti-malware system.

Design of detection method for malicious URL based on Deep Neural Network (뉴럴네트워크 기반에 악성 URL 탐지방법 설계)

  • Kwon, Hyun;Park, Sangjun;Kim, Yongchul
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.5
    • /
    • pp.30-37
    • /
    • 2021
  • Various devices are connected to the Internet, and attacks using the Internet are occurring. Among such attacks, there are attacks that use malicious URLs to make users access to wrong phishing sites or distribute malicious viruses. Therefore, how to detect such malicious URL attacks is one of the important security issues. Among recent deep learning technologies, neural networks are showing good performance in image recognition, speech recognition, and pattern recognition. This neural network can be applied to research that analyzes and detects patterns of malicious URL characteristics. In this paper, performance analysis according to various parameters was performed on a method of detecting malicious URLs using neural networks. In this paper, malicious URL detection performance was analyzed while changing the activation function, learning rate, and neural network structure. The experimental data was crawled by Alexa top 1 million and Whois to build the data, and the machine learning library used TensorFlow. As a result of the experiment, when the number of layers is 4, the learning rate is 0.005, and the number of nodes in each layer is 100, the accuracy of 97.8% and the f1 score of 92.94% are obtained.

Implementation of the Automated De-Obfuscation Tool to Restore Working Executable (실행 파일 형태로 복원하기 위한 Themida 자동 역난독화 도구 구현)

  • Kang, You-jin;Park, Moon Chan;Lee, Dong Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.4
    • /
    • pp.785-802
    • /
    • 2017
  • As cyber threats using malicious code continue to increase, many security and vaccine companies are putting a lot of effort into analysis and detection of malicious codes. However, obfuscation techniques that make software analysis more difficult are applied to malicious codes, making it difficult to respond quickly to malicious codes. In particular, commercial obfuscation tools can quickly and easily generate new variants of malicious codes so that malicious code analysts can not respond to them. In order for analysts to quickly analyze the actual malicious behavior of the new variants, reverse obfuscation(=de-obfuscation) is needed to disable obfuscation. In this paper, general analysis methodology is proposed to de-obfuscate the software used by a commercial obfuscation tool, Themida. First, We describe operation principle of Themida by analyzing obfuscated executable file using Themida. Next, We extract original code and data information of executable from obfuscated executable using Pintool, DBI(Dynamic Binary Instrumentation) framework, and explain the implementation results of automated analysis tool which can deobfuscate to original executable using the extracted original code and data information. Finally, We evaluate the performance of our automated analysis tool by comparing the original executable with the de-obfuscated executable.

Rare Malware Classification Using Memory Augmented Neural Networks (메모리 추가 신경망을 이용한 희소 악성코드 분류)

  • Kang, Min Chul;Kim, Huy Kang
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.4
    • /
    • pp.847-857
    • /
    • 2018
  • As the number of malicious code increases steeply, cyber attack victims targeting corporations, public institutions, financial institutions, hospitals are also increasing. Accordingly, academia and security industry are conducting various researches on malicious code detection. In recent years, there have been a lot of researches using machine learning techniques including deep learning. In the case of research using Convolutional Neural Network, ResNet, etc. for classification of malicious code, it can be confirmed that the performance improvement is higher than the existing classification method. However, one of the characteristics of the target attack is that it is custom malicious code that makes it operate only for a specific company, so it is not a form spreading widely to a large number of users. Since there are not many malicious codes of this kind, it is difficult to apply the previously studied machine learning or deep learning techniques. In this paper, we propose a method to classify malicious codes when the amount of samples is insufficient such as targeting type malicious code. As a result of the study, we confirmed that the accuracy of 97% can be achieved even with a small amount of data by applying the Memory Augmented Neural Networks model.

The Characteristics of Malicious Comments: Comparisons of the Internet News Comments in Korean and English (악성 댓글의 특성: 한국어와 영어의 인터넷 뉴스 댓글 비교)

  • Kim, Young-il;Kim, Youngjun;Kim, Youngjin;Kim, Kyungil
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.1
    • /
    • pp.548-558
    • /
    • 2019
  • Along generalization of internet news comments, malicious comments have been spread and made many social problems. Because writings reflect human mental state or trait, analyzing malicious comments, human mental states could be inferred when they write internet news comments. In this study, we analyzed malicious comments of English and Korean speaker using LIWC and KLIWC. As a result, in both English and Korean, malicious comments are commonly more used in sentence, word phrase, morpheme, word phrase per sentence, morpheme per sentence, positive emotion words, and cognitive process words than normal comments, and less used in the third person singular, adjective, anger words, and emotional process words than normal comments. This means people are state that they can not control their feeling such as anger and can not think well when they write news comments. Therefore, when internet comments were written, service provider should consider the way that commenters monitor own writings by themselves and that they prevent the other users from getting close to comments included many negative-emotion words. In other sides, it is discovered that English and Korean malicious comments was discriminated by authenticity. In order to be more objective, gathering data from various point of time is needed.

Automatic Classification of Malicious Usage on Twitter (트위터 상의 악의적 이용 자동분류)

  • Kim, Meen Chul;Shim, Kyu Seung;Han, Nam Gi;Kim, Ye Eun;Song, Min
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.47 no.1
    • /
    • pp.269-286
    • /
    • 2013
  • The advent of Web 2.0 and social media is taking a leading role of emerging big data. At the same time, however, informational dysfunction such as infringement of one's rights and violation of social order has been increasing sharply. This study, therefore, aims at defining malicious usage, identifying malicious feature, and devising an automated method for classifying them. In particular, the rule-based experiment reveals statistically significant performance enhancement.