• 제목/요약/키워드: Make-to-forecast

검색결과 218건 처리시간 0.02초

Component Commonality and Order Matching Rules in Make-to-Forecast Production

  • Morikawa, Katsumi;Deguchi, Yusuke;Takahashi, Katsuhiko;Hirotani, Daisuke
    • Industrial Engineering and Management Systems
    • /
    • 제9권3호
    • /
    • pp.196-203
    • /
    • 2010
  • Make-to-forecast production is a way to realize high customization and fast responsiveness. This study firstly investigates the effect of introducing a common component in a make-to-forecast production environment. The common component can eliminate a modification step, which is a major cost component in make-to-forecast production. It is illustrated, however, that introducing a versatile component that merely covers several variants is unattractive, and thus adding values to the common component is inevitable in this environment. Secondly, an order-matching rule under the condition that two partially overlapped delivery lead time intervals exist is proposed. The rule considers the effect of matching orders to units that can cover both intervals. An alternative re-matching rule is also developed and examined. Numerical experiments clarify that the proposed rule generally realizes higher contribution ratio and lower percentages of orphans and rejected orders. The proposed re-matching rule increases the average contribution ratio at the expense of increased orphans and order rejections.

한반도 안개 특성 분석 및 예보 기법 연구 (The Study of Characteristics of Korea Fog and Forecast Guidance)

  • 김준식;김재환;박상환;김영철
    • 한국항공운항학회지
    • /
    • 제21권1호
    • /
    • pp.68-73
    • /
    • 2013
  • This study is to make a protype of forecast guidance for forecasters from analyzing the characteristics of Korea Fog. The trend of Korea fog showed the decline in the number of foggy days and the duration time, the gradient is -1.24days/year under 3 miles and -0.98days/year under 1 mile and -1.64hours/year under 3 miles and -3.18hours/year under 1 mile in duration time in 27 ROKAF base. To find the protype of inland and coastal forecast guidance, Daegu base as a representation of the inland base and Gangneung base as the representation of the coastal base were chosen. For Daegu base, the mixture of relative humidity, sky condition, and the position of high pressure were selected for the forecast guidance. For Gangneung base, pressure pattern, sea surface temperature, sea currents, and 850hPa temperature patterns were selected for the forecast guidance.

How to forecast solar flares, solar proton events, and geomagnetic storms

  • Moon, Yong Jae
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.33-33
    • /
    • 2013
  • We are developing empirical space weather (solar flare, solar proton event, and geomagnetic storm) forecast models based on solar data. In this talk we will review our main results and recent progress. First, we have examined solar flare (R) occurrence probability depending on sunspot McIntosh classification, its area, and its area change. We find that sunspot area and its increase (a proxy of flux emergence) greatly enhance solar flare occurrence rates for several sunspot classes. Second, a solar proton event (S) forecast model depending on flare parameters (flare strength, duration, and longitude) as well as CME parameters (speed and angular width) has been developed. We find that solar proton event probability strongly depends on these parameters and CME speed is well correlated with solar proton flux for disk events. Third, we have developed an empirical storm (G) forecast model to predict probability and strength of a storm using halo CME - Dst storm data. For this we use storm probability maps depending on CME parameters such as speed, location, and earthward direction. We are also looking for geoeffective CME parameters such as cone model parameters and magnetic field orientation. We find that all superstorms (less than -200 nT) occurred in the western hemisphere with southward field orientations. We have a plan to set up a storm forecast method with a three-stage approach, which will make a prediction within four hours after the solar coronagraph data become available. We expect that this study will enable us to forecast the onset and strength of a geomagnetic storm a few days in advance using only CME parameters and the WSA-ENLIL model. Finally, we discuss several ongoing works for space weather applications.

  • PDF

Estimation and Prediction of Financial Distress: Non-Financial Firms in Bursa Malaysia

  • HIONG, Hii King;JALIL, Muhammad Farhan;SENG, Andrew Tiong Hock
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제8권8호
    • /
    • pp.1-12
    • /
    • 2021
  • Altman's Z-score is used to measure a company's financial health and to predict the probability that a company will collapse within 2 years. It is proven to be very accurate to forecast bankruptcy in a wide variety of contexts and markets. The goal of this study is to use Altman's Z-score model to forecast insolvency in non-financial publicly traded enterprises. Non-financial firms are a significant industry in Malaysia, and current trends of consolidation and long-term government subsidies make assessing the financial health of such businesses critical not just for the owners, but also for other stakeholders. The sample of this study includes 84 listed companies in the Kuala Lumpur Stock Exchange. Of the 84 companies, 52 are considered high risk, and 32 are considered low-risk companies. Secondary data for the analysis was gathered from chosen companies' financial reports. The findings of this study show that the Altman model may be used to forecast a company's financial collapse. It dispelled any reservations about the model's legitimacy and the utility of applying it to predict the likelihood of bankruptcy in a company. The findings of this study have significant consequences for investors, creditors, and corporate management. Portfolio managers may make better selections by not investing in companies that have proved to be in danger of failing if they understand the variables that contribute to corporate distress.

Chaotic Predictability for Time Series Forecasts of Maximum Electrical Power using the Lyapunov Exponent

  • Park, Jae-Hyeon;Kim, Young-Il;Choo, Yeon-Gyu
    • Journal of information and communication convergence engineering
    • /
    • 제9권4호
    • /
    • pp.369-374
    • /
    • 2011
  • Generally the neural network and the Fuzzy compensative algorithms are applied to forecast the time series for power demand with the characteristics of a nonlinear dynamic system, but, relatively, they have a few prediction errors. They also make long term forecasts difficult because of sensitivity to the initial conditions. In this paper, we evaluate the chaotic characteristic of electrical power demand with qualitative and quantitative analysis methods and perform a forecast simulation of electrical power demand in regular sequence, attractor reconstruction and a time series forecast for multi dimension using Lyapunov Exponent (L.E.) quantitatively. We compare simulated results with previous methods and verify that the present method is more practical and effective than the previous methods. We also obtain the hourly predictability of time series for power demand using the L.E. and evaluate its accuracy.

Evaluation of a Solar Flare Forecast Model with Value Score

  • Park, Jongyeob;Moon, Yong-Jae;Lee, Kangjin;Lee, Jaejin
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.80.1-80.1
    • /
    • 2016
  • There are probabilistic forecast models for solar flare occurrence, which can be evaluated by various skill scores (e.g. accuracy, critical success index, heidek skill score, and true skill score). Since these skill scores assume that two types of forecast errors (i.e. false alarm and miss) are equal or constant, which does not take into account different situations of users, they may be unrealistic. In this study, we make an evaluation of a probabilistic flare forecast model [Lee et al., 2012] which use sunspot groups and its area changes as a proxy of flux emergence. We calculate daily solar flare probabilities from 2011 to 2014 using this model. The skill scores are computed through contingency tables as a function of forecast probability, which corresponds to the maximum skill score depending on flare class and type of a skill score. We use a value score with cost/loss ratio, relative importance between the two types of forecast errors. The forecast probability (y) is linearly changed with the cost/loss ratio (x) in the form of y=ax+b: a=0.88; b=0 (C), a=1.2; b=-0.05(M), a=1.29; b=-0.02(X). We find that the forecast model has an effective range of cost/loss ratio for each class flare: 0.536-0.853(C), 0.147-0.334(M), and 0.023-0.072(X). We expect that this study would provide a guideline to determine the probability threshold and the cost/loss ratio for space weather forecast.

  • PDF

Evaluation of a Solar Flare Forecast Model with Cost/Loss Ratio

  • Park, Jongyeob;Moon, Yong-Jae;Lee, Kangjin;Lee, Jaejin
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.84.2-84.2
    • /
    • 2015
  • There are probabilistic forecast models for solar flare occurrence, which can be evaluated by various skill scores (e.g. accuracy, critical success index, heidek skill score, true skill score). Since these skill scores assume that two types of forecast errors (i.e. false alarm and miss) are equal or constant, which does not take into account different situations of users, they may be unrealistic. In this study, we make an evaluation of a probabilistic flare forecast model (Lee et al. 2012) which use sunspot groups and its area changes as a proxy of flux emergence. We calculate daily solar flare probabilities from 1996 to 2014 using this model. Overall frequencies are 61.08% (C), 22.83% (M), and 5.44% (X). The maximum probabilities computed by the model are 99.9% (C), 89.39% (M), and 25.45% (X), respectively. The skill scores are computed through contingency tables as a function of forecast probability, which corresponds to the maximum skill score depending on flare class and type of a skill score. For the critical success index widely used, the probability threshold values for contingency tables are 25% (C), 20% (M), and 4% (X). We use a value score with cost/loss ratio, relative importance between the two types of forecast errors. We find that the forecast model has an effective range of cost/loss ratio for each class flare: 0.15-0.83(C), 0.11-0.51(M), and 0.04-0.17(X), also depending on a lifetime of satellite. We expect that this study would provide a guideline to determine the probability threshold for space weather forecast.

  • PDF

A Multi-agent based simulation Model for evacuees escaping from Tsunami disaster -To evaluate the evacuees escaping program in Fujisawa city, Japan-

  • Fujioka, Masaki;Ishibashi, Kenichi;Kaji, Hideki;Tsukagoshi, Isao
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2001년도 The Seoul International Simulation Conference
    • /
    • pp.306-312
    • /
    • 2001
  • In this research, we are trying to develop a framework to evaluate the prevention program for Tsunami disaster based on the Multi-agent simulation model. Tsunami has arisen by the earthquake. It happened after flew minutes or few hours when it occurred. It is clear that Tsunami will come after earthquake and from seashore. If we prevent the damage by Tsunami, we should make people who is in the seashore and lived near the seaside escape from there. Moreover we must forecast the escape activity from Tsunami. Former research of this field, some researches try to forecast the escape activity as macro level. However, people who escape from Tsunami is differ from their physical ability and ability of information processing. It needs a more accuracy model to forecast the escape activity of them. Furthermore they make a decision step by step using the various information. Therefore escape activity from Tsunami will describe using an agent based model which can only treat the information processing of human being. In this paper, we develop the evacuation model from Tsunami disaster using the Multi agent based model. The purpose of this study is to analyze the human action pattern when Tsunami occurred, and to make an accurately assessment for damages by Tsunami. The Fujisawa city government is planning and operating the various prevention program far Tsunami. However nobody assess it, because they do not have any simulation models for Tsunami disaster. If they want to set an effective prevention program for Tsunami, they should have any kinds of simulation model. The results of this study are 1) To develop the Multi agent based evacuees escape activity model. 2) Assess the damage of Tsunami in Fujisawa-City.

  • PDF

GMDH를 이용한 전력 수요 예측 알고리즘 개발 (Development of Power Demand Forecasting Algorithm Using GMDH)

  • 이동철;홍연찬
    • 한국지능시스템학회논문지
    • /
    • 제13권3호
    • /
    • pp.360-365
    • /
    • 2003
  • 본 논문에서는 데이터의 효율적인 활용과 정확성에서 보다 우수한 특성을 보이는 GMDH(Croup Method of Data Handling) 알고리즘을 전력수요예측에 적용함으로써 입력 데이터의 선정을 용이하게 하였고, 다양한 데이터를 기반으로 보다 정확한 예측을 할 수 있게 하였다. 그리고, 예측 시에 경제적인 요인(GDP, 수출, 수입, 취업자 수, 경제활동인구, 석유소비량)과 기후적인 요인(평균기온)을 모두 고려하였다. 또한 목표 예측 기간을 1999년 1/4분기에서 2001년 1/4분기까지 9개의 분기로 가정하고, 가정한 목표 기간의 예측 정확도를 높이기 위해 3단계의 시뮬레이션 과정(최적 입력 분기 수를 결정하는 과정, 입력 데이터와 예측값의 시간적 연관성을 분석하는 과정, 입력 데이터의 최적화 과정)을 이용함으로써 더 정확한 전력수요예측 방법을 제시하였고, 제안된 기법으로 목표한 예측 기간에서 0.96%의 평균 에러율을 얻을 수 있었다.

강우에 의한 돌발 산사태 예·경보 시스템 구축 방안 (Development Method of Early Warning Systems for Rainfall Induced Landslides)

  • 김성필;봉태호;배승종;박재성
    • 한국농공학회논문집
    • /
    • 제57권4호
    • /
    • pp.135-141
    • /
    • 2015
  • The objective of this study is to develop an early warning system for rainfall induced landslides. For this study, we suggested an analysis process using rainfall forecast data. 1) For a selected slope, safety factor with saturated depth was analyzed and safety factor threshold was established (warning FS threshold=1.3, alarm FS threshold=1.1). 2) If rainfall started, saturated depth and safety factor was calculated with rainfall forecast data, 3) And every hour after safety factor is compared with threshold, then warning or alarm can issued. In the future, we plan to make a early warning system combined with the in-situ inclinometer sensors.