• 제목/요약/키워드: Main flow

Search Result 3,329, Processing Time 0.032 seconds

A NUMERICAL STUDY ON HEAT TRANSFER ENHANCEMENT BY PULSATILE FLOW IN A PLATE HEAT EXCHANGER (판형 열교환기의 맥동유동에 의한 열전달 향상에 관한 수치해석연구)

  • Lee, Myung-Sung;Hur, Nahm-Keon;Kang, Byung-Ha
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.93-96
    • /
    • 2006
  • The heat transfer enhancement by pulsatile flow in the plate heat exchanger has been investigated numerically in the present study. The numerical study was performed in the range of the mass flux from 0.04 to 0.12 kg/s. The results showed that the pulsatile flow produces resonating vortex shedding at the groove sharp edges and a strong transient vortex rotation within the grooved channels. As a result, the mixing between the trapped volume in the grooved cavity and the main stream was enhanced. Good agreements between the predictions and measured data are obtained in steady flow. And the heat transfer of pulsatile flow is about 2.4 times than steady flow when frequency is 10 Hz and the mass flux of cold side is 0.04 kg/s.

  • PDF

Experimental Study on the Mean Flow Characteristics of Forward-Curved Centrifugal Fans

  • Kwon, Eui-Yong;Cho, Nam-Hyo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.12
    • /
    • pp.1728-1738
    • /
    • 2001
  • Measurements have been made in an automotive HVAC b1ower for two different centrifugal fans. This work is directed at improving the performance of a conventional forward-curved centrifugal fan for a given small blower casing. Mean velocities and pressure have been measured using a miniature five-hole probe and a pressure scanning unit connected to an online data acquisition system. First, we obtained the fan performance versus flow rates showing a significant attenuation of unstable nature achieved with the new fan rotor in the surging operation range. Second, aerodynamic characterizations were carried out by investigating the velocity and pressure fields in the casing flow passage for different fan operating conditions. The measurements stowed that performance coefficients are strongly influenced by flow characteristics at the throat region. The main flow features ware common in both fans, but improved performance is achieved with tole new fan rotor, particularly in lower flow rate legions. Based on the measured results, design improvements were carried out in an acceptable operation range, which gave considerable insight into what features of flow behavior ware most important.

  • PDF

Applicability of One-Dimensional Mechanistic Post-Dryout Prediction Model

  • Jeong, Hae-Yong;No, Hee-Cheon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.586-591
    • /
    • 1996
  • Through the analysis of many experimental post-dryout data, it is shown that the most probable flow regime near dryout or quench front is not annular flow but churn-turbulent flow when the mass flux is low. A correlation describing the initial droplet size just after the CHF position at low mass flux is suggested through regression analysis. In the post-dryout region at low pressure and low flow, it is found that the suggested one-dimensional mechanistic model is not applicable when the vapor superficial velocity is very low, i.e., when the flow is bubbly or slug flow regime. This is explained by the change of main entrainment mechanism with the change of flow regime. Therefore, the suggested correlation is valid only in the churn-turbulent flow regime ( $j_{g}$ $^{*}$=0.5~4.5).).

  • PDF

Flow analysis of fermenter, digester and dryer environmental in energy facilities (환경 에너지 시설 내 발효조, 소화기 및 건조기 유동해석)

  • Jeon, Yong-Han
    • Design & Manufacturing
    • /
    • v.13 no.4
    • /
    • pp.28-33
    • /
    • 2019
  • In this study, the flow analysis of fermentation tank, digester and dryer, which are the main equipment in environmental energy facilities, was carried out. Numerical analysis was carried out with the size of the actual plant, and 3D modeling program CATIA V5 R16, grid generation program Gambit, and general purpose flow analysis package ANSYS-FLUENT (v13) were used. Simulation results of the carrier gas flow analysis in the STD dryer using the computational fluid dynamics program showed that the carrier gas smoothly circulated between the shells of the dryer and the flow was uniformly distributed without stagnation or flow. It is also predicted that rotational flow due to shell rotation is active. The average flow velocity of carrier gas in the STD dryer was estimated to be about 0.196m / s, and the average temperature of the carrier gas was calculated to be 424K. Due to the relatively slow carrier gas velocity and high average temperature, the water content of the sludge can be effectively lowered.

Reactive Reserve Based Contingency Constrained Optimal Power Flow for Enhancement of Voltage Stability Margins (전압안정도 여유 향상을 위한 무효예비력 기반 상정사고 제약 최적조류계산)

  • Song, Hwa-Chang;Lee, Byong-Jun;Kwon, Sae-Hyuk;Ajjarapu, Venkataramana
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.19-23
    • /
    • 2003
  • This paper presents a new concept of reactive reserve based contingency constrained optimal power flow (RCCOPF) for voltage stability enhancement. This concept is based on the fact that increase in reactive reserves is effective for enhancement of voltage stability margins of post-contingent states, in this paper, the proposed algorithm is applied to voltage stability margin of interface flow. Interface flow limit, in the open access environment, can be a main drawback. RCCOPF for enhancement of interface flow margin is composed of two modules, modified continuation power flow (MCPF) and optimal power flow (OPF). These modules art recursively perform ed until satisfying the required margin of interface flow in the given voltage stability criteria.

  • PDF

Lift Enhancement and Drag Reduction on an Airfoil at Low Reynolds Number using Blowing and Distributed Suction

  • Chao, Song;Xudong, Yang
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.1
    • /
    • pp.6-11
    • /
    • 2015
  • An active flow control technique using blowing and distributed suction on low Reynolds airfoil is investigated. Simultaneous blowing and distributed suction can recirculate the jet flow mass, and reduce the penalty to propulsion system due to avoiding dumping the jet mass flow. Energy is injected into main flow by blowing on the suction surface, and the low energy boundary flow mass is removed by distributed suction, thus the flow separation can be successfully suppressed. Aerodynamic lift to drag ratio is improved significantly using the flow control technique, and the energy consumption is quite low.

Flow Measurement and Control by Time-Based Method

  • Chang, Young-Chul;Kim, No-Hyu;Kim, Yong-Cheol
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2002.11a
    • /
    • pp.115-116
    • /
    • 2002
  • This study aimed to investigate flow measurement by using a 'bucket and stop-watch' method of flow measurement. Most flow measurement systems measure pressure or other fluid properties to infer flow rate, though time is a variable which can be easily and very accurately measured. The main principle behind the method was to fill up a reservoir until a set pressure had been reached. This reservoir would then be emptied and the cycle would repeat itself. The prototype was designed to control flow rate using the method. It made use of computer control with an analogue digital converter and fast acting solenoid valves which controlled the flow into a reservoir. Reservoirs were available with internal diameter of 1mm up to 5.5mm to cope with a range of flow rate.

  • PDF

The fabrication of micro mass flow sensor by Micro-machining Technology (Micromachining 기술을 이용한 micro mass flow sensor의 제작)

  • Eoh, Soo-Hae;Choi, Se-Gon
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.481-485
    • /
    • 1987
  • The fabrication of a micro mass flow sensor on a silicon chip by means of micro-machining technology is described on this paper. The operation of micro mass flow sensor is based on the heat transfer from a heated chip to a fluid. The temperature differences on the chip is a measure for the flow velocity in a plane parallel with the chip surface. An anisotropic etching technigue was used for the formation of the V-type groove in this fabrication. The micro mass flow sensor is made up of two main parts ; A thin glass plate embodying the connecting parts and mass flow sensor parts in silicon chip. This sensor have a very small size and a neglible dead space. Micro mass flow sensor can fabricate on silicon chip by micro machining technology too.

  • PDF

Flow Instability of Cryogenic Fluid in the Downstream of Orifices

  • Thai, Quangnha;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.413-418
    • /
    • 2008
  • Flow instability in the rocket turbo pump system can be caused by various reasons such as valve, orifice and venturi, etc. The inception of cavitation, especially in the propellant feeding system, is the primary cause of the mass flow and pressure oscillation due to cyclic formation and depletion of cavitation. Meanwhile, the main propellant in liquid rocket engine is the cryogenic one, which is very sensitive to temperature variation, and the variation of propellant properties caused by thermodynamic effect should be accounted for in the flow analysis. The present study focuses on the formation of cryogenic cavitations by adopting IDM model suggested by Shyy and coworkers. Also, the flow instability was investigated in the downstream of orifice by using a developed numerical code. Calculation results show that cryogenic cavitations can lead to flow instability resulting in mass flow fluctuations due to pressure oscillations. And the prediction of cavitations in cryogenic fluid is of vital importance in designing feeding system of LRE.

  • PDF

A Study of Unstable Phenomenon of Flow Truss Dome Structure with Asymmetric Load Modes (Flow Truss Dome 구조물의 비대칭 하중모드에 따른 불안정 현상에 관한 연구)

  • Shon, Su-Deok;Kim, Seung-Deog;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.4 s.6
    • /
    • pp.61-76
    • /
    • 2002
  • The structure system that is discreterized by continuous shells is usually used to make a large space structures and these structures show the collapse mechanisms that are captured at over the limit load, and snap-through and bifurcation are most well known of it. For the collapse mechanism, rise-span ratio, element stiffness and load mode are main factor, which it give an effect to unstable behavior. Moreover, resist force of structure can be reduced by initial condition and initial imperfection significantly. In order to investigate the instability of shell structures, the finite deformation theory can be applied and it becomes a nonlinear mathematics in which use equation of tangential stiffness incrementally. With an initial imperfection, using simple example and Flow Truss Dome, the buckling characteristics of space truss is main purpose of this paper, and unstable behavior is studied by proposed the numerical method. Also, by using MIDAS, this research work analyzes displacements and inner forces as the design load of model, and the ratio of buckling load of design load is investigated.

  • PDF