• Title/Summary/Keyword: Main conversion

Search Result 591, Processing Time 0.029 seconds

Development of Integrated Start-up and Excitation System for Gas Turbine Synchronous Generator (가스터빈 동기기 통합형 기동 및 여자시스템 개발)

  • Ryu, Hoseon;Cha, Hanju
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.183-188
    • /
    • 2014
  • Power conversion systems used in large gas turbine power plant can be divided into two main part. Because of the initial start-up characteristic of the gas turbine combustor, the gas turbine must be accelerated by starting device(LCI : Load Commutated Inverter) up to 10%~20% of rated speed to ignite it. In addition, the ECS(Excitation Control system) is used to control the rotor field current and reactive power in grid-connected synchronous generator. These two large power conversion systems are located in the same space(container) because of coordination control. Recently, many manufactures develop high speed controller based on function block available in the LCI and ECS with the newest power semiconductor. We also developed high speed controller based on function block to be using these two system and it meets the international standard IEC61131 as using real-time OS(VxWorks) and ISaGRAF. In order to install easily these systems at power plant, main controller, special module and IO module are used with high speed communication line other than electric wire line. Before initial product is installed on the site, prototype is produced and tests are conducted for it. The performance results of Integrated controller and application program(SFC, ECS) were described in this paper. The test results will be considered as the important resources for the application in future.

A High-Efficiency High Step-Up Interleaved Converter with a Voltage Multiplier for Electric Vehicle Power Management Applications

  • Tseng, Kuo-Ching;Chen, Chun-Tse;Cheng, Chun-An
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.414-424
    • /
    • 2016
  • This paper proposes a novel high-efficiency high-step-up interleaved converter with a voltage multiplier, which is suitable for electric vehicle power management applications. The proposed interleaved converter is capable of achieving high step-up conversion by employing a voltage-multiplier circuit. The proposed converter lowers the input-current ripple, which can extend the input source's lifetime, and reduces the voltage stress on the main switches. Hence, large voltage spikes across the main switches are alleviated and the efficiency is improved. Finally, a prototype circuit with an input voltage of 24 V, an output voltage of 380 V, and an output rated power of 1 kW is implemented and tested to demonstrate the functionality of the proposed converter. Moreover, satisfying experimental results are obtained and discussed in this paper. The measured full-load efficiency is 95.2%, and the highest measured efficiency of the proposed converter is 96.3%.

A Design of Gateway for Industrial Communication (산업용 통신 게이트웨이 설계)

  • Eum, Sang-hee;Lee, Byong-hoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.281-283
    • /
    • 2016
  • Recently, many industrial instruments face the problem of protocol compatibility with the external monitoring and control system. This paper is prepared in the main control board to support the industrial communication protocol conversion, control, and monitoring. The industrial communication gateway module is also designed to ensure that the protocol conversion of CAN bus and Ethernet. The main board processor is used the Atmega2560, and placed 4ea RS485 serial slots for sub-board. One of them is used for communication CAN bus and Ethernet. It provides analog and digital I / O through each of the slots is used for control and monitoring.

  • PDF

A New Dual-Active Soft-Switching Converter for an MTEM Electromagnetic Transmitter

  • Wang, Xuhong;Zhang, Yiming;Liu, Wei
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1454-1468
    • /
    • 2017
  • In this study, a new dual-active soft-switching converter is proposed to improve conversion efficiency and extend the load range for an MTEM electromagnetic transmitter in geological exploration. Unlike a conventional DC/DC converter, the proposed converter can operate in passive soft-switching, single-active soft-switching, or dual-active soft-switching modes depending on the change in load power. The main switches and lagging auxiliary switches of the converter can attain soft-switching over the entire load range. The conduction and switching losses are greatly reduced compared with those of ordinary converters under the action of the cut-off diodes and auxiliary windings coupled to the main transformer in the auxiliary circuits. The conversion efficiency of the proposed converter is significantly improved, especially under light-load conditions. First, the working principle of the proposed converter is analyzed in detail. Second, the relationship between the different operating modes and the load power is given and the design principle of the auxiliary circuit is presented. Finally, the Saber simulation and experimental results verify the feasibility and validity of the converter and a 50 kW prototype is implemented.

Study of Emulsion Polymerization Condition of Aqueous Adhesive (유화중합을 이용한 수분산성접착제의 중합조건에 관한 연구)

  • Lee, HaengJa;Park, JiSun;Lee, SangRok;Kim, JongMin;Chang, SangMok
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.470-475
    • /
    • 2009
  • To study the optimal synthesis conditions of aqueous acrylic adhesive using emulsion polymerization, the effects of monomer, surfactant and initiator on the adhesive properties, such as conversion rate, particle size, peel strength, and glass transition temperature, were investigated. 2-EHA, n-BA and MMA were used as main monomers, 2-HEMA and AAc as functional monomers, SLS as surfactant and APS as initiator, respectively. The conversion rate was over 95% at 3.75% surfactant(SLS/monomer), 0.612% initiator(APS/monomer) and $82^{\circ}C$ reaction temperature. When the excess amount of surfactant or initiator was used, the peel strength represented decreasing tendency. The maximum conversion rate and peel strength were obtained at 65% 2-EHA/monomer, 20% BA/monomer, and 10% MMA/monomer.

The Effect of eWOM Information Characteristics and Brand Community Experience Value on Brand Trust, Conversion

  • HAN, Sang-Seol
    • The Journal of Industrial Distribution & Business
    • /
    • v.13 no.4
    • /
    • pp.35-49
    • /
    • 2022
  • Purpose - According to the recently changing consumer smart environment and consumer decision-making process, this study investigates the structural relationship between electronic(online) WOM information characteristics and brand community experience value types on specific brand reliability and brand transformation. In particular, the characteristics of word of mouth information and the experience value of brand community users were divided into detailed fac tors and approached. Methodology - In order to proceed with this study, we review previous studies and setting hypotheses. The hypothesis was verified through a survey that was conducted for the consumers with online consumption activities in less than six months. With reference to previous studies, operational definition was made for the questionnaire design. In order to verify the hypothesis, 282 people were statistically analyzed through the survey This data were used for AMOS for confirm hypothesis established. Results - eWOM information characteristics were classified into usefulness, timeliness and un-bias, and online community experience values were classified into interaction, playfulness, and virtuality. In addition, it is to investigate the relationship between the brand reliability and user's experience value in brad community. The main results are as follows. The first result was that usefulness and un-bias, which are the eWOM information characteristics had a positive effect on forming brand reliability. However, the factor of timeliness did not affect brand reliability. Second, in terms of user experience value and brand reliability in the brand community. It was fo und that experience values such as interaction, playfulness, and vituality all had a positive influence on brand reliability. Third, it was found that brand reliability has a positive influence on the on-line conversion activity of users. Conclusions - Through this study, the field of online consumer behavior research is expanding, and this study suggested that careful management is necessary according to the type or characteristics of eWOM information. Additionally, it presents the importance of the user's empirical value in the brand community influencing brand attitude and reliability. In practice, the implementation of the marketing communication mix in digital marketing has recently been underway to enhance the conversion behavior of users. At this level, it also reveals the preceding factors that increase user conversion behavior.

Investigating the Reaction Characteristics of Electrolyte Dimethyl Carbonate(DMC) under Thermal Runaway Conditions of Lithium-Ion Battery (리튬이온배터리 열폭주 조건에서 전해질 Dimethyl Carbonate(DMC) 반응 특성 분석)

  • Jeon, Min-Kyu;Lee, Eun-Song;Yoon, Hong-Sik;Keel, Sang-In;Park, Hyun-Wook
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_3
    • /
    • pp.1275-1284
    • /
    • 2022
  • This study provides an investigating the electrolyte reaction characteristics during thermal runaway of a lithium-ion battery(LIB). Dimethyl carbonate(DMC) is known as the main substance that makes up the electrolyte. The mono-molecular decomposition characteristics of DMC were derived through numerical analysis. Cobalt oxide can release oxygen under high temperature conditions. Also, DMC is converted to CH4, H2, CO, and CO2. Especially, it was found that the decomposition of the DMC begins at a temperature range of 340-350℃, which dramatically increases the internal pressure of the LIB. In the by-products gases, the molar ratio of CO and CO2 changed according to the molecular structure of DMC and temperature conditions. The correlation of the [CO]/[CO2] ratio according to the temperature during thermal runaway was derived, and the characteristics of the reaction temperature could be estimated using the molar ratio as an indicator. In addition, the oxidation and decomposition characteristics of DMC according to the residence time for each temperature were estimated. When DMC is exposed to low temperature for a long time, both oxidation and decomposition may occur. There is possibility of not only increasing the internal pressure of the LIB, but also promoting thermal runaway. In this study, internal environment of LIB was identified and the reaction characteristics between the active materials of the cathode and electrolyte were investigated.

Recent Research Trends of Catalytic Conversion of CO2 to High-value Chemicals (촉매 전환을 이용한 이산화탄소의 고부가 가치제품 생산에 대한 최근 연구 동향)

  • Song, Ki-Hun;Ryu, Jun-hyung;Chung, Jong-Sik
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.519-530
    • /
    • 2009
  • Reducing the emission of carbon dioxide, which is the main contributor to the green house effect, is becoming a global hot issue. Great attention has been thus given to utilization of carbon dioxide rather than just capturing and isolating it because it could convert carbon dioxide to high-value chemicals. In this paper, recent research trends are investigated on the catalytic conversion of carbon dioxide to syngas in the context of $CH_4$, dry-reforming, trireforming, and the electro-catalytic conversion of carbon dioxide through SOFC(Solid Oxide Fuel Cell) system. Research trends for utilizing syngas to high-value-added useful products, mainly fuel such as DME(Dimethyl Ether) are also discussed.

Response Characteristic Analysis using Modeling of Propulsion System for 8200 Electric Locomotive (8200호대 전기기관차 추진시스템 모델링을 이용한 응답특성분석)

  • Jung, No-Geon;Chang, Chin-Young;Yun, Cha-Jung;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1640-1646
    • /
    • 2013
  • Conventional power conversion unit that is a major part of the propulsion system has applied GTO thyristor as a switching semiconductor device of main circuit since introduction of the 8200 electric locomotive. But problem that quick maintenance is difficult and its cost is increasing occurs because major components of the power conversion unit are slowly discontinued. To solve these, in this paper, it was analyzed the response characteristic of the propulsion system modeling of the 8200 electric locomotive using IGBT which is applied recently to ensure propulsion control technology. As results of response for a Propulsion system modeling, it show that a power conversion unit is controlled by PLL(Phase-locked loop) and SVPWM(Space Voltage PWM) respectively.

Accurate MATLAB Simulink PV System Simulator Based on a Two-Diode Model

  • Ishaque, Kashif;Salam, Zainal;Taheri, Hamed
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.179-187
    • /
    • 2011
  • This paper proposes a MATLAB Simulink simulator for photovoltaic (PV) systems. The main contribution of this work is the utilization of a two-diode model to represent a PV cell. This model is known to have better accuracy at low irradiance levels which allows for a more accurate prediction of PV system performance. To reduce computational time, the input parameters are reduced to four and the values of $R_p$ and $R_s$ are estimated by an efficient iteration method. Furthermore, all of the inputs to the simulator are information available on a standard PV module datasheet. The simulator supports large array simulations that can be interfaced with MPPT algorithms and power electronic converters. The accuracy of the simulator is verified by applying the model to five PV modules of different types (multi-crystalline, mono-crystalline, and thin-film) from various manufacturers. It is envisaged that the proposed work can be very useful for PV professionals who require a simple, fast and accurate PV simulator to design their systems.