• Title/Summary/Keyword: Main compounds

Search Result 858, Processing Time 0.027 seconds

PubMine: An Ontology-Based Text Mining System for Deducing Relationships among Biological Entities

  • Kim, Tae-Kyung;Oh, Jeong-Su;Ko, Gun-Hwan;Cho, Wan-Sup;Hou, Bo-Kyeng;Lee, Sang-Hyuk
    • Interdisciplinary Bio Central
    • /
    • v.3 no.2
    • /
    • pp.7.1-7.6
    • /
    • 2011
  • Background: Published manuscripts are the main source of biological knowledge. Since the manual examination is almost impossible due to the huge volume of literature data (approximately 19 million abstracts in PubMed), intelligent text mining systems are of great utility for knowledge discovery. However, most of current text mining tools have limited applicability because of i) providing abstract-based search rather than sentence-based search, ii) improper use or lack of ontology terms, iii) the design to be used for specific subjects, or iv) slow response time that hampers web services and real time applications. Results: We introduce an advanced text mining system called PubMine that supports intelligent knowledge discovery based on diverse bio-ontologies. PubMine improves query accuracy and flexibility with advanced search capabilities of fuzzy search, wildcard search, proximity search, range search, and the Boolean combinations. Furthermore, PubMine allows users to extract multi-dimensional relationships between genes, diseases, and chemical compounds by using OLAP (On-Line Analytical Processing) techniques. The HUGO gene symbols and the MeSH ontology for diseases, chemical compounds, and anatomy have been included in the current version of PubMine, which is freely available at http://pubmine.kobic.re.kr. Conclusions: PubMine is a unique bio-text mining system that provides flexible searches and analysis of biological entity relationships. We believe that PubMine would serve as a key bioinformatics utility due to its rapid response to enable web services for community and to the flexibility to accommodate general ontology.

Emission Characteristics of Odorous Gases with the Decay of Albumin and Yolk of Boiled Egg (삶은 달걀의 부패에 따른 부위별 냄새물질의 발생특성 연구)

  • Kim, Bo-Won;Kim, Ki-Hyun;Kim, Yong-Hyun;Ahn, Jeong-Hyeon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.2
    • /
    • pp.95-109
    • /
    • 2014
  • In this study, the concentration of odorants released from albumin (EA) and yolk (EY) portions of boiled egg samples were determined as a function of storage time. The concentrations were measured at storage days of 0, 1, 3, 6, and 9 under room temperature. As such, odorants produced during both fresh and decay conditions were measured through time. A total of 19 compounds were selected as the main target odorants along with 12 reference compounds. GC-MS (for VOC) and GC-PFPD system (for sulfur gases) equipped with thermal desorption (TD) system were employed for odorant analysis in this work. The initial concentrations measured from the chamber system were converted into flux terms ($ng{\cdot}g^{-1}{\cdot}min^{-1}$). The EA showed the highest concentration of $H_2S$ (234 $ng{\cdot}g^{-1}{\cdot}min^{-1}$) at EA-0, and the concentrations of AT (Acetone) was also seen clearly in the range of 11.7 (EA-0) to 58.6 $ng{\cdot}g^{-1}{\cdot}min^{-1}$ (EA-9). The EY showed similar patterns. EtAl (Ethyl alcohol) increased 9.47 (EA-1) to 96.7 $ng{\cdot}g^{-1}{\cdot}min^{-1}$ (EA-9) in EA samples. Ketone, alcohol, sulfur groups generally exhibited high concentrations compared to other odorants. These data were also compared in relation to olfactometry related dilution-to-threshold (D/T) ratio by air dilution sensory (ADS) test and sum of odor intensity (SOI).

Fabrication of nickel nanoparticles-embedded carbon particles by solution plasma in waste vegetable oil

  • Pansuwan, Gun;Phuksawattanachai, Surayouth;Kerdthip, Kraiphum;Sungworawongpana, Nathas;Nounjeen, Sarun;Anantachaisilp, Suranan;Kang, Jun;Panomsuwan, Gasidit;Ueno, Tomonaga;Saito, Nagahiro;Pootawang, Panuphong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.10
    • /
    • pp.894-898
    • /
    • 2016
  • Solution plasma is a unique method which provides a direct discharge in solutions. It is one of the promising techniques for various applications including the synthesis of metallic/non-metallic nanomaterials, decomposition of organic compounds, and the removal of microorganism. In the context of nanomaterial syntheses, solution plasma has been utilized to produce carbon nanoparticles and metallic-carbon nanoparticle systems. The main purpose of this study was to synthesize nickel nanoparticles embedded in a matrix of carbon particles by solution plasma in one-step using waste vegetable oil as the carbon source. The experimental setup was done by simply connecting a bipolar pulsed power generator to nickel electrodes, which were submerged in the waste vegetable oil. Black powders of the nickel nanoparticles-embedded carbon (NiNPs/Carbon) particles were successfully obtained after discharging for 90 min. The morphology of the synthesized NiNPs/Carbon was investigated by a scanning electron microscope, which revealed a good dispersion of NiNPs in the carbon-particle matrix. The X-ray diffraction of NiNPs/Carbon clearly showed the co-existence of crystalline Ni nanostructures and amorphous carbon. The crystallite size of NiNPs (through the Ni (111) diffraction plane), as calculated by the Scherrer equation was found to be 64 nm. In addition, the catalytic activity of NiNPs/Carbon was evaluated by cyclic voltammetry in an acid solution. It was found that NiNPs/Carbon did not show a significant catalytic activity in the acid solution. Although this work might not be helpful in enhancing the activity of the fuel cell catalysts, it is expected to find application in other processes such as the CO conversion (by oxidation) and cyclization of organic compounds.

Change of Heavy Metals and Sediment Facies in Surface Sediments of the Shihwa Lake (시화호 표층퇴적물의 중금속 및 퇴적상 변화)

  • 최만식;천종화;우한준;이희일
    • Journal of Environmental Science International
    • /
    • v.8 no.5
    • /
    • pp.593-600
    • /
    • 1999
  • In order to determine the changes of sediment facies and metal levels in surface sediments after the construction of Shiwha Lake, surface sediments were sampled at 8 sites located on the main channel monthly from June, 1995 to August, 1996 and analysed for 12 metals (Al, Fe, Mn, V, Cr, Co, Ni, Cu, Zn, Cd, As and Pb) by ICP/AES and ICP/MS. Two groups of sampling sites(the inner lake with 3 sites and the outer lake with 5 sites) are subdivided by the surface morphology ; the inner lake is a shallow channel area with a gentle slope, while the outer lake is relatively deep and wide channel with a steep slope which has many small distributaries. After the construction of dam, fine terrestrial materials were deposited near the outer lake, which resulted in the change of major sediment facies from sandy silt to mud. With the deposition of fine sediments in the outer lake, anoxic water column induced the formation of sulfide compounds with Cu, Cd, Zn and part of Pb. Metal (Cr, Ni, Cu, Zn and Cd) contents in sediments increased up to twice within 2 years after the construction of dam. This is due to the direct input of industrial and municipal wastes into the lake and the accumulation of metals within the lake. In addition, frequent resuspension of contaminated sediments in a shallow part of the lake may make metal-enriched materials transport near the outer lake with fine terrestrial materials. As the enrichment of Cu, Zn, Cd and part of Pb in the Shiwha Lake may be related to the formation of unstable sulfide compounds by sulfate reduction in anoxic water or sediment column, the effect of mixing with open coastal seawater is discussed.

  • PDF

Hydrolysis Stability of Sulfonated Phthalic and Naphthalenic Polyimide with Ester Bond (에스테르기를 도입한 술폰화 프탈계 폴리이미드와 나프탈렌계 폴리이미드의 수화안정성에 관한 연구)

  • 이영무;이창현;손준용;박호범
    • Membrane Journal
    • /
    • v.13 no.2
    • /
    • pp.110-117
    • /
    • 2003
  • Sulfonated polyimides had been utilized and studied widely as available materials in chloro-alkali electrolysis, cationic exchange resins, and so on. However, a slow decrease in performance during experiments had been reported, which could be attributed to a loss of ionic conductivity related to either a continuous dehydration or polymer degradation. One of main reasons to account for the degradation of sulfonated polymers is the hydrolysis leading to polymer chain scission and decrement of molecular weight. Therefore, the objective of our study was to investigate possible imide cycle and additional ester bond cleavage connected with $SO_3$H presence under hydrated condition. In order to confirm and obtain as clear information as possible about breakages of bonds via $^1H\; and \;^{13}C$ NMR and IR spectroscopic analyses, our study was performed by model compound. Consequently, model compounds with both phthalic and naphthalenic imide ring and ester bonds were synthesized to evaluate the hydrolysis stability of sulfonated polyimide. The experiments were performed for prepared model compounds before and after aging in deionized water at $80^{\circ}C$ and were terminated by lyophilization technique. The aging products were finally analyzed by NMR and IR spectroscopy.

A new validated analytical method for the quality control of red ginseng products

  • Kim, Il-Woung;Cha, Kyu-Min;Wee, Jae Joon;Ye, Michael B.;Kim, Si-Kwan
    • Journal of Ginseng Research
    • /
    • v.37 no.4
    • /
    • pp.475-482
    • /
    • 2013
  • The main active components of Panax ginseng are ginsenosides. Ginsenoside Rb1 and Rg1 are accepted as marker substances for quality control worldwide. The analytical methods currently used to detect these two compounds unfairly penalize steamed and dried (red) P. ginseng preparations, because it has a lower content of those ginsenosides than white ginseng. To manufacture red ginseng products from fresh ginseng, the ginseng roots are exposed to high temperatures for many hours. This heating process converts the naturally occurring ginsenoside Rb1 and Rg1 into artifact ginsenosides such as ginsenoside Rg3, Rg5, Rh1, and Rh2, among others. This study highlights the absurdity of the current analytical practice by investigating the time-dependent changes in the crude saponin and the major natural and artifact ginsenosides contents during simmering. The results lead us to recommend (20S)- and (20R)-ginsenoside Rg3 as new reference materials to complement the current P. ginseng preparation reference materials ginsenoside Rb1 and Rg1. An attempt has also been made to establish validated qualitative and quantitative analytical procedures for these four compounds that meet International Conference of Harmonization (ICH) guidelines for specificity, linearity, range, accuracy, precision, detection limit, quantitation limit, robustness and system suitability. Based on these results, we suggest a validated analytical procedure which conforms to ICH guidelines and equally values the contents of ginsenosides in white and red ginseng preparations.

A first-principles theoretical investigation of the structural, electronic and magnetic properties of cubic thorium carbonitrides ThCxN(1-x)

  • Siddique, Muhammad;Rahman, Amin Ur;Iqbal, Azmat;Azam, Sikander
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1373-1380
    • /
    • 2019
  • Besides promising implications as fertile nuclear materials, thorium carbonitrides are of great interest owing to their peculiar physical and chemical properties, such as high density, high melting point, good thermal conductivity. This paper reports first-principles simulation results on the structural, electronic and magnetic properties of cubic thorium carbonitrides $ThC_xN_{(1-x)}$ (X = 0.03125, 0.0625, 0.09375, 0.125, 0.15625) employing formalism of density-functional-theory. For the simulation of physical properties, we incorporated full-potential linearized augmented plane-wave (FPLAPW) method while the exchange-correlation potential terms in Kohn-Sham Equation (KSE) are treated within Generalized-Gradient-Approximation (GGA) in conjunction with Perdew-Bruke-Ernzerhof (PBE) correction. The structural parameters were calculated by fitting total energy into the Murnaghan's equation of state. The lattice constants, bulk moduli, total energy, electronic band structure and spin magnetic moments of the compounds show dependence on the C/N concentration ratio. The electronic and magnetic properties have revealed non-magnetic but metallic character of the compounds. The main contribution to density of states at the Fermi level stems from the comparable spectral intensity of Th (6d+5f) and (C+N) 2p states. In comparison with spin magnetic moments of ThSb and ThBi calculated earlier with LDA+U approach, we observed an enhancement in the spin magnetic moments after carbon-doping into ThN monopnictide.

Antioxidant composition and activity of aronia leaves at different stages of maturity (아로니아 잎의 성숙도에 따른 항산화 물질 조성 및 항산화 능력)

  • Yang, Haejo;Park, Hyunjeong;Yun, Hyeongyeol;Kim, Young-Jun;Shin, Youngjae
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.2
    • /
    • pp.133-138
    • /
    • 2021
  • In this study, the leaves of aronia (Aronia melanocarpa) across different stages of maturity were collected and their chlorophyll content, antioxidant content, and activity were analyzed. The leaves of the selected aronia cultivars ('Viking', 'McKenzie', and 'Kingstar K1') were harvested in June (young-stage leaf) and in August (old-stage leaf). The antioxidant content and activity of all three aronia cultivar leaves were significantly higher in the young-stage leaves than in the old-stage leaves. The main polyphenols in aronia leaves were catechol and chlorogenic acid, which tended to decrease as maturation progressed. As a result, the young-stage aronia leaves contained more abundant flavonoids, phenolic compounds, and polyphenols with higher antioxidant activity than those in the old-stage leaves. Overall, our findings indicate that aronia leaves contain potential bioactive compounds that could be used to develop functional food ingredients.

Workers' Exposure to Indium Compounds at the Electronics Industry in Republic of Korea

  • Yi, Gwangyong;Jeong, Jeeyeon;Bae, Yasung;Shin, Jungah;Ma, Hyelan;Lee, Naroo;Park, Seung-Hyun;Park, Dooyong
    • Safety and Health at Work
    • /
    • v.12 no.2
    • /
    • pp.238-243
    • /
    • 2021
  • Objectives: The aim of this study was to provide baseline data for the assessment of exposure to indium and to prevent adverse health effects among workers engaged in the electronics and related industries in Republic of Korea. Methods: Total (n = 369) and respirable (n = 384) indium concentrations were monitored using personal air sampling in workers at the following 19 workplaces: six sputtering target manufacturing companies, four manufacturing companies of panel displays, two companies engaged in cleaning of sputtering components, two companies dedicated to the cleaning of sputtering target, and five indium recycling companies. Results: The level of exposure to total indium ranged from 0.9 to 609.3 ㎍/m3 for the sputtering target companies; from 0.2 to 2,782.0 ㎍/m3 for the panel display companies and from 0.5 to 2,089.9 ㎍/m3 for the indium recycling companies. The level of exposure to respirable indium was in the range of 0.02 to 448.6 ㎍/m3 for the sputtering target companies; 0.01 to 419.5 ㎍/m3 for the panel display companies; and 0.5 to 436.3 ㎍/m3 for the indium recycling companies. The indium recycling companies had the most samples exceeding the exposure standard for indium, followed by sputtering target companies and panel display companies. Conclusions: The main finding from this exposure assessment is that many workers who handle indium compounds in the electronics industry are exposed to indium levels that exceed the exposure standards for indium. Hence, it is necessary to continuously monitor the indium exposure of this workforce and take measures to reduce its exposure levels.

Tentative identification of 20(S)-protopanaxadiol metabolites in human plasma and urine using ultra-performance liquid chromatography coupled with triple quadrupole time-of-flight mass spectrometry

  • Ling, Jin;Yu, Yingjia;Long, Jiakun;Li, Yan;Jiang, Jiebing;Wang, Liping;Xu, Changjiang;Duan, Gengli
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.539-549
    • /
    • 2019
  • Background: 20(S)-Protopanaxadiol (PPD), the aglycone part of 20(S)-protopanaxadiol ginsenosides, possesses antidepressant activity among many other pharmacological activities. It is currently undergoing clinical trial in China as an antidepressant. Methods: In this study, an ultra-performance liquid chromatography coupled with triple quadrupole time-of-flight mass tandem mass spectrometry method was established to identify the metabolites of PPD in human plasma and urine following oral administration in phase IIa clinical trial. Results: A total of 40 metabolites in human plasma and urine were identified using this method. Four metabolites identified were isolated from rat feces, and two of them were analyzed by NMR to elucidate the exact structures. The structures of isolated compounds were confirmed as (20S,24S)-epoxydammarane-12,23,25-triol-3-one and (20S,24S)-epoxydammarane-3,12,23,25-tetrol. Both compounds were found as metabolites in human for the first time. Upon comparing our findings with the findings of the in vitro study of PPD metabolism in human liver microsomes and human hepatocytes, metabolites with m/z 475.3783 and phase II metabolites were not found in our study whereas metabolites with m/z 505.3530, 523.3641, and 525.3788 were exclusively detected in our experiments. Conclusion: The metabolites identified using ultra-performance liquid chromatography coupled with triple quadrupole time-of-flight mass spectrometry in our study were mostly hydroxylated metabolites. This indicated that PPD was metabolized in human body mainly through phase I hepatic metabolism. The main metabolites are in 20,24-oxide form with multiple hydroxylation sites. Finally, the metabolic pathways of PPD in vivo (human) were proposed based on structural analysis.