• Title/Summary/Keyword: Main Bearing

Search Result 599, Processing Time 0.027 seconds

Static Properties of Superconductor Journal Bearing Substator for Superconductor Flywheel Energy Storage System (초전도 저널베어링 Substator의 특성평가)

  • Park, B.J.;Jung, S.Y.;Lee, J.P.;Park, B.C.;Jeong, N.H.;Sung, T.H.;Han, Y.H.
    • Progress in Superconductivity
    • /
    • v.10 no.1
    • /
    • pp.55-59
    • /
    • 2008
  • A Superconductor Flywheel Energy Storage System(SFES) mainly consists of a pair of non-contacting High Temperature Superconductor(HTS) bearings that provide very low frictional losses, a composite flywheel with high energy storage density. The HTS bearings, which offer dynamic stability without active control, are the key technology that distinguishes the SFES from other flywheel energy storage devices, and great effort is being put into developing this technology. The Superconductor Journal Bearing(SJB) mainly consists of HTS bulks and a stator, which holds the HTS bulks and also acts as a cold head. Static properties of HTS bearings provide data to solve problems which may occur easily in a running system. Since stiffness to counter vibration is the main parameter in designing an HTS bearing system, we investigate SJB magnetic force through static properties between the Permanent Magnet(PM) and HTS. We measure stiffness in static condition and the results are used to determine the optimal number of HTS bulks for a 100kWh SFES.

  • PDF

Study on Geometry Design of Lip-Seal for Automobile Wheel Bearing Considering Drag Torque and Sealing Performance (자동차용 횔베어링의 기동토크와 밀봉성을 고려한 립 씰의 형상 설계에 관한 연구)

  • Huh, Young-Min;Lee, Kwang-O;Sim, Tae-Yang;Kang, Sung-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.10-16
    • /
    • 2007
  • A rubber seal for wheel bearing which has been mainly applied to car wheel supporting device is required to have both high sealing performance and drag torque. Because of severe operational conditions like infiltration of mud or splashed water, the importance of rubber seal which is aimed for leakage prevention of grease and effective blocking of foreign substances has been increasing continuously. The sealing performance of this seal depends on several factors such as materials of seal, friction conditions of contact regions and geometry of seals and so on. We have focused on the effects of geometric characteristics such as the angle of main lip, interference between lip edge and inner metallic ring. In this study, the optimization of geometric variables was performed using the finite element analysis. For the sake of finite element analysis, uniaxial tensile tests were conducted and several constants for Mooney-Rivlin's equation were obtained. According to the results of this study, mock-up bearing was made. To verify this study, drag torque and mud spray test were preformed.

Estimation of Yield strength and Slip Modulus for Helically Threaded Nail Connection (나선형 철선못 접합부의 항복내력 및 강성 예측)

  • Hwang, Kweonhwan;Shim, Kug-Bo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.524-530
    • /
    • 2009
  • In the post-beam structure, the infilled light-frame construction provides most shear strengths. Shear properties of the light-frame structure can be estimated from the shear properties of nailed connection for the sheathings, and those of nailed connections can be done from nail bending strengths. For the basic study to predict the yield strength and the slip modulus of a nailed sheathing shear wall, those of a nailed joint were examined from nail bending strengths. To estimate shear properties of a nailed connection, referenced bearing strength and bearing constant for the wood members and the experimental nail bending strengths of the helically threaded nail were applied. The yield strength using the diameter at grooves instead of shank diameter was well coincided with the experimental value, but the slip modulus was estimated much smaller. The effective factors, specific gravity for the main member, withdrawal by nail head diameter to the side member, and embedment and moment at the nail head were considered, and further examinations are needed for the precise prediction of the nailed connections.

Axial compressive behavior of concrete-encased CFST stub columns with open composite stirrups

  • Ke, Xiaojun;Ding, Wen;Liao, Dingguo
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.399-409
    • /
    • 2021
  • The existing method to improve the coordination performance of the inner and outer parts of concrete-encased concrete-filled steel tube (CFST) composite columns by increasing the volume-stirrup ratio causes difficulties in construction due to over-dense stirrups. Thus, this paper proposes an open polygonal composite stirrup with high strength and high ductility CRB600H reinforced rebar, and seventeen specimens were constructed, and their axial compressive performance was tested. The main parameters considered were the volume-stirrup ratio, the steel tube size, the stirrup type and the stirrup strength. The test results indicated: For the specimens restrained by open octagonal composite stirrups, compared with the specimen of 0.5% volume-stirrup ratio, the compressive bearing capacity increased by 14.6%, 15.7% and 21.5% for volume-stirrup ratio of 0.73%, 1.07% and 1.61%, respectively. For the specimens restrained by open composite rectangle stirrups, compared with the specimen of 0.79% volume-stirrup ratio, the compressive bearing capacity increased by 7.5%, 6.1%, and -1.4% for volume-stirrup ratio of 1.12%, 1.58% and 2.24%, respectively. The restraint ability and the bearing capacity of the octagonal composite stirrup are better than other stirrup types. The specimens equipped with open polygonal composite stirrup not only had a higher ductility than those with the traditional closed-loop stirrup, but they also had a higher axial bearing capacity than those with an HPB300 strength grades stirrup. Therefore, the open composite stirrup can be used in practical engineering. A new calculation method was proposed based on the stress-strain models for confined concrete under different restrain conditions, and the predicted value was close to the experimental value.

Thermal Expansion Measurement of Turbine and Main Steam Piping by Using Strain Gages in Power Plants (스트레인게이지를 활용한 발전소 터빈 및 주증기 배관의 열팽창 측정)

  • Na, Sang-Soo;Chung, Jae-Won;Bong, Suk-Kun;Jun, Dong-Ki;Kim, Yun-Suk
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.886-891
    • /
    • 2000
  • One of the domestic co-generation plants have undergone excessive vibration problems of turbine attributed to external force for years. The root cause of turbine vibration may be shan alignment problem which sometimes is changed by thermal expansion and external farce, even if turbine technicians perfectly performed it. To evaluate the alignment condition from plant start-up to full load, a strain measurement of turbine and main steam piping subjected to thermal loading is monitored by using strain gages. The strain gages are bonded on both bearing housing adjusting bolts and pipe stoppers which. installed in the x-direction of left-side main steam piping near the turbine inlet in order to monitor closely the effect of turbine under thermal deformation of turbine casing and main steam piping during plant full load. Also in situ load of constant support hangers in main steam piping system is measured by strain gages and its results are used to rebalance the hanger rod load. Consequently, the experimental stress analysis by using strain gages turns out to be very useful tool to diagnose the trouble and failures of not only to stationary components but to rotating machinery in power plants.

  • PDF

Fructification, Fruit Characteristics, and Yield According to Tree Age of Jujube Tree (Zizyphus jujuba var. inermis) 'Hwangsil' (대추나무 '황실'의 수령에 따른 결실 및 과실특성과 수확량)

  • Kim, Chul-Woo;Na, Min-Ho;Park, Hyowon;Lee, Uk
    • Journal of Korean Society of Forest Science
    • /
    • v.110 no.4
    • /
    • pp.601-609
    • /
    • 2021
  • The fructification characteristics, fruit quality, and yield of the 'Hwangsil' jujube tree were analyzed at various stages of growth age (3-8 years old) to obtain basic data for developing high-quality jujube production technology. The average height, crown area, stem diameter near the root, stem clear length, the number of the main branches, and the distance between any two main branches were 230.8 cm (224.4~247.2 cm), 3.0 m2 (2.1~3.8m2), 4.8 cm (2.4~6.2 cm), 69.1 cm (46.6~78.0 cm), 12.9 (8.6~19.6), and 8.1 cm (7.4~9.0 cm), respectively. Tree age was positively correlated with the crown area, stem diameter near the root, but stem clear length negatively correlated with the number of main branches. The average number of fruits per mother bearing shoot and tree was 20.0 (14.3~26.3) and 302.8 (257.3~373.5), respectively. There was no correlation between tree age and fructification characteristics, such as the number of fruit-bearing mother shoots per the main branch, the number of fruit-bearing shoots per fruit-bearing mother shoot, and the number of fruits per fruit-bearing shoot. Since the shape of the jujube tree is constantly managed based onthe growing area and type of greenhouse where the tree grown. The average fruit weight, fruit hardness, and soluble solid content were 24.2 g (22.4~26.8 g), 28.4 N (27.3~30.0 N), and 19.0% (17.1~19.8%), respectively, with no correlation between the tree age and fruit quality. The average yield was 7.4 kg per tree (5.7~9.1 kg), with significantly high quantities were produced in six and seven years old trees.

Fruit Characteristics and Yield according to the Age of "Cheonhwang" Jujube Trees (Zizyphus jujuba var. inermis) (대추나무 '천황'의 수령에 따른 과실품질과 수확량)

  • Park, Seong-In;Chul-Woo Kim;Yoo, Hui-Won;Lee, Uk;Ahn, Young-Sang
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.4
    • /
    • pp.548-556
    • /
    • 2022
  • In this study, basic data were obtained to determine the optimal cultivation method to achieve stable fruiting and yield increase in "Cheonhwang" jujube trees. Accordingly, thefructification, fruit characteristics, and yield according to tree age were analyzed. The mean (and range of) tree height, crown area, stem diameter near the root, clear stem length, number of main branches, and distance between main branches were 235.6 (217.4-253.8) cm, 3.5 (3.1-4.1) m2, 5.5 (4.0-7.1) cm, 70.6 (66.2-72.7) cm, 9.7 (8.6-10.5), and 10.4 (7.9-14.2) cm, respectively. Correlationanalysis results indicated that tree age was positively correlated with crown area, stem diameter near the root, and clear stem length but not with the number of main branches. The mean number (and range) of fruit per fruit-bearing mother shoot and tree were 18.3 (16.7-18.3) and 170.7 (157.9-178.3), respectively. Tree age was not significantlycorrelated with fruiting characteristics (i.e., the numbers of fruit-bearing mother shoots per main branch, fruit-bearing shoots per fruit-bearing mother shoot, fruit per fruit-bearing shoot, and fruit per tree). Given that the shape of jujube trees is constantly managed according to the growing area and greenhouse type, the tree growth characteristics were more affected by tree management techniques than by tree age. The mean (and range of) fruit weight, fruit hardness, and soluble solid content were 28.6 (27.7-30.3) g, 29.4 (28.5-30.4) N, and 20.4 (19.3-21.0) °brix, respectively, and these fruit characteristics were not significantly correlated with tree age.The average yield per tree of the 'Cheonhwang' jujube cultivar was 4.9 (4.8-5.0) kg, which was not significantly correlated with tree age.

Measurement of Journal Bearing Friction Loss of Turbocharger in a Passenger Vehicle (승용차용 터보과급기의 저널 베어링 마찰 손실 측정)

  • Chung, in-Eun;Jeon, Se-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.9-15
    • /
    • 2018
  • The turbochargers, which are used widely in diesel and gasoline engines, are an effective device to reduce fuel consumption and emissions. On the other hand, turbo-lag is one of the main problems of a turbocharger. Bearing friction losses is a major cause of turbo lag and is particularly intense in the lower speed range of the engine. Current turbochargers are mostly equipped with floating bearings: two journal bearings and one thrust bearing. This study focused on the bearing friction at the lower speed range and the experimental equipment was established with a drive-motor, load-cell, magnetic coupling, and oil control system. Finally, the friction losses of turbochargers were measured considering the influence of the rotating speed from 30,000rpm to 90,000rpm, oil temperature from $50^{\circ}C$ to $100^{\circ}C$, and oil supply pressure of 3bar and 4bar. The friction power losses were increased exponentially to 1.6 when the turbocharger speed was increased. Friction torques decreased with increasing oil temperature and increased with increasing oil pressure. Therefore, the oil temperature and pressure must be maintained at appropriate levels.

Analysis of the Power for a Decanter-Type Centrifuge (II) - Total Power and the Power-Transmission Mechanism - (Decanter형 원심분리기의 동력 계산 (II) - 총동력과 동력전달 기구 -)

  • Suh, Yong-Kweon;Han, Geun-Jo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.7
    • /
    • pp.938-947
    • /
    • 2003
  • In this paper, we derived the formula for estimating the power of the electric motors needed to operate the Decanter-type centrifuge. In the derivation of the formula the sludge-removal torque is to be supplied from the formula derived in the first paper. The intricate nature of the transmission mechanism in the planetary gear trains of the sludge-removal power and torque has been clarified in this second paper. In particular we considered two-motor system, where the main motor drives the machine while the differential-speed control motor plays the role of braking in adjusting the differential speed. Sample calculation for the specific design treated in the first paper showed that the selection criterion for the main motor depends on the lower limit of the differential speed; when the lower limit is set low, it should be selected based on the steadily operating power, while it should be selected based on the starting power when the lower limit is set high. The total power required by both the main motor and the differential-speed control motor increases as the differential speed is decreased. It is suggested that the power loss in the differential-speed control motor could be minimized by attaching an electric generator to it.

Test Construction of the Paved Track at Subway Main Line (도시철도 본선 토공구간에서의 포장궤도 시험부설)

  • Lee, Il-Wha;Kang, Yun-Suk;Kong, Sun-Yong;Kim, Sang-Jin;Lee, Shun-Gu;Jung, Yun-Sik
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1689-1694
    • /
    • 2008
  • Recently, the development of the paved track is required as a low-maintenance of conventional line. The main reason is that the line capacity and bearing of track are increased progressively. The important factors of paved track are stability and applicability. To be based on this subject, cement mortar pouring type paved track is developed. The paved track is a kind of concrete track using the prepacked concrete technique. The most important thing to design the paved track is to optimize the track structure and materials considering various conditions. Until now, the paved track is verified a various material and structure test. In this paper, it is introduce to the test construction at the urban subway main line. The test construction is completed at Dec. 2007. A major object and substance is a guarantee of construction progress on main line, track performance, construction technique for curved section, transition zone and winter season, recycling the used ballast and application of specific sleeper for sharp curved section.

  • PDF