• Title/Summary/Keyword: Main Bearing

Search Result 599, Processing Time 0.03 seconds

Wear Simulation of Engine Bearings in the Beginning of Firing Start-up cycle (파이어링 시동 사이클 초기에서의 엔진 베어링 마모 시뮬레이션)

  • Chun, Sang Myung
    • Tribology and Lubricants
    • /
    • v.35 no.4
    • /
    • pp.244-266
    • /
    • 2019
  • The purpose of this study is to estimate the wear volumes of engine journal bearings operating at variable angular velocity of a shaft in the beginning of firing start-up cycle. To do this, first we find the potential region of wear scar on engine journal bearings where the applied bearing load and crank shaft velocity are variable. The potential wear regions are discovered by finding minimum oil film thickness at every crank angle existing below most oil film thickness scaring wear (MOFTSW) obtained based on the concept of the centerline average surface roughness. Then we calculate the wear volume from the wear depth and two wear angles decided by the magnitude of each film thickness lower than MOFTSW at every crank angle. The results show that the expected wear region is located at a few bearing angles after and/or behind the upper center of a big-end bearing and the lower center of a main bearing. And the real wear region is similar to the estimated wear region. Further we find that the wear scar on an engine journal bearing may occur at re-starting time after switch-off of a start motor especially under the condition of high oil temperature.

Design Optimization for Automotive Wheel Bearings Considering Life and Stiffness (수명과 강성을 고려한 자동차용 휠 베어링의 설계 최적화)

  • Seungpyo Lee
    • Tribology and Lubricants
    • /
    • v.39 no.3
    • /
    • pp.94-101
    • /
    • 2023
  • Automotive wheel bearings are a critical component of vehicles that support their weight and facilitate rotation. Life and stiffness are significant performance characteristics of wheel bearings. Designing wheel bearings involves finding optimal design variables that satisfy both performances. CO2 emission reduction and fuel efficiency regulations attribute to the recent increase in design requirements for lightweight and compact automotive parts while maintaining performance. However, achieving a design that maintains performance while reducing weight poses challenges, as performance and weight are generally inversely proportional. In this study, we perform design optimization of automotive wheel bearings considering life and stiffness. We develop a program that calculates the basic rated life and modified rated life based on international standards for evaluating the life of wheel bearings. We develop a regression equation using regression analysis to address the time-consuming stiffness analysis during repetitive analysis. We perform ANOVA and main effect analyses to understand the statistical characteristics of the developed regression equation. Furthermore, we verify its reliability by comparing the predicted and test results. We perform design optimization using the developed life prediction program, stiffness regression equation and weight regression equation. We select bearing specifications and geometry as design variables, weight as the cost function, and life and stiffness as constraints. Through design optimization, we investigate the influence of design variables on the cost function and constraints by comparing the initial and optimal design values.

Torque Prediction of Ball Bearings Considering Cages using Computational Fluid Dynamics (전산유체역학을 이용한 케이지가 고려된 볼 베어링의 토크 예측)

  • Jungsoo Park;Jeongsik Kim;Seungpyo Lee
    • Tribology and Lubricants
    • /
    • v.40 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • Ball bearings are a major component of mechanical parts for transmitting rotation. Compared to tapered roller bearings, ball bearings offer less rolling resistance, which leads to reduced heat generation during operation. Because of these characteristics, ball bearings are widely used in electric vehicles and machine tools. The design of ball bearing cages has recently emerged as a major issue in ball bearing design. Cage design requires pre-verification of performance using theoretical or experimental formula or computational fluid dynamics (CFD). However, CFD analysis is time-consuming, making it difficult to apply in case studies for design decisions and is mainly used in performance prediction following design confirmation. To use CFD in the early stages of design, main-taining analytical accuracy while reducing the time required for analysis are necessary. Accordingly, this study proposes a laminar steady-state segment CFD technique to solve the problem of long CFD analytical times and to enable the use of CFD analysis in the early stages of design. To verify the reliability of the CFD analysis, a bearing drag torque test is performed, and the results are compared with the analytical results. The proposed laminar steady-state segment CFD technique is expected to be useful for case studies in bearing design, including cage design.

Photoreactions of Photofunctional polymer Bearing Acyloxyimino Groups and Its Applications (아실옥사이미노기를 갖는 광기능성고분자의 광반응과 이용)

  • Song, Gyeong-Hyeon
    • The Journal of Natural Sciences
    • /
    • v.5 no.1
    • /
    • pp.59-65
    • /
    • 1992
  • In this study, new photosensitive polymers bearing acyloxyimino(AOI) group were prepared and the relationship between photochemical reactions of the polymers and changes of their physical properties was investigated. It was found that main reaction of these copolymers depended on the structure of polymer mainchain. From the view point of amino groups formation, acryl type polymers were superior to methacryl type polymers. On the other hand, in the case of mathacryl type polymers, mainchain scissions and formation of double bonds occurred very effectively. Applications of these copolymers to photofunctional polymers were also discussed.

  • PDF

On Diagnosis Measurement under Dynamic Loading of Ball Bearing using Numerical Thermal Analysis and Infrared Thermography (전산 열해석 및 적외선 열화상을 이용한 볼베어링의 동적 하중에 따른 진단 계측에 관한 연구)

  • Hong, Dong-Pyo;Kim, Ho-Jong;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.4
    • /
    • pp.355-360
    • /
    • 2013
  • With the modern machinery towards the direction of high-speed development, the thermal issues of mechanical transmission system and its components is increasingly important. Ball bearing is one of the main parts in rotating machinery system, and is a more easily damaged part. In this paper, bearing thermal fault detection is investigated in details Using infrared thermal imaging technology to the operation state of the ball bearing, a preliminary thermal analysis, and the use of numerical simulation technology by finite element method(FEM) under thermal conditions of the bearing temperature field analysis, initially identified through these two technical analysis, bearing a temperature distribution in the normal state and failure state. It also shows the reliability of the infrared thermal imaging technology. with valuable suggestions for the future bearing fault detection.

Dynamic performance of girder bridges with explosion-proof and aseismic system

  • Wang, Jingyu;Yuan, Wancheng;Wu, Xun;Wei, Kai
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.419-426
    • /
    • 2017
  • Recently, the transportation of dangerous explosive goods is increasing, which makes vehicle blasting accidents a potential threat for the safety of bridge structures. In addition, blasting accidents happen more easily when earthquake occurs. Excessive dynamic response of bridges under extreme loads may cause local member damage, serviceability issues, or even failure of the whole structure. In this paper, a new explosion-proof and aseismic system is proposed including cable support damping bearing and steel-fiber reinforced concrete based on the existing researches. Then, considering one 40m-span simply supported concrete T-bridge as the prototype, through scale model test and numerical simulation, the dynamic response of the bridge under three conditions including only earthquake, only blast load and the combination of the two extreme loads is obtained and the applicability of this explosion-proof and aseismic system is explored. Results of the study show that this explosion-proof and aseismic system has good adaptability to seism and blast load at different level. The reducing vibration isolation efficiency of cable support damping bearing is pretty high. Increasing cables does not affect the good shock-absorption performance of the original bearing. The new system is good at shock absorption and displacement limitation. It works well in reducing the vertical dynamic response of beam body, and could limit the relative displacement between main girder and capping beam in different orientation so as to solve the problem of beam falling. The study also shows that the enhancement of steel fibers in concrete could significantly improve the blast resistance of main beam. Results of this paper can be used in the process of antiknock design, and provide strong theoretical basis for comprehensive protection and support of girder bridges.

Correlation between Unbalance Variation and Cutting Surface Condition of Roller Bearing-Structured Main Spindles (롤러베어링 구조형 주축 회전체의 언밸런스 변동과 절삭표면상태 연관성에 관한 연구)

  • Ha, Jeong-ung;Park, Dong-hui;Park, Hwang-gi;Jeon, Seung-min;Hong, Jin-pyo;Yoon, Sang-hwan;Park, Jong-kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.107-115
    • /
    • 2020
  • The rotation accuracy of the main spindle that determines the accuracy of CNC machine tools is closely related to the quality of production because it directly affects the shape error and surface roughness of the workpiece. Therefore, the main spindle requires high rotation accuracy, rigidity, and rotation technology. This rotation accuracy is greatly affected by the bearing, center alignment between rotating parts, assembly tolerance, and unbalance of the rotation mass. In this study, the effects of the unbalance of the rotation mass of the main spindle on the rotation accuracy were investigated experimentally. In particular, we tried to study the technical reasons for improving the unbalance of the main spindle and maintaining the rotation accuracy as we verified the correlation between the vibration characteristics of CNC machine tools due to the specifically set unbalance amount and the surface roughness of the workpiece.

Integrated Dynamic Simulation of a Magnetic Bearing Stage and Control Design (자기베어링 스테이지의 동적 거동 통합 시뮬레이션을 통한 제어 설계)

  • Kim, Byung-Sub
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.730-734
    • /
    • 2013
  • The dynamic simulation of machine tools and motion control systems has been widely used for optimization, design verification, control design, etc. There are three main streams in dynamic simulation: structural dynamic analysis based onthe finite element method, dynamic motion analysis based on equations of motion, and control system analysis based on transfer functions. Generally, one of these dynamic simulation methods is chosen and employed for specific purposes. In this study, an integrated dynamic simulation is introduced, in which the structure, motion, and control dynamics are combined together. Commercially well-known software is used in the integrated dynamic simulation: ANSYS, ADAMS, and Matlab/Simulink. Using the integrated dynamic simulation, the dynamics of a magnetic bearing stage is analyzed and the causes of oscillation and noise are identified. A controller design for suppressing a flexible dynamic mode is carried out and verified through the integrated dynamic simulation.