• 제목/요약/키워드: Magnetron sputtering technology

검색결과 629건 처리시간 0.022초

A STUDY ON THE RELATIONSHIP BETWEEN PLASMA CHARACTERISTICS AND FILM PROPERTIES FOR MgO BY PULSED DC MAGNETRON SPUTTERING

  • Nam, Kyung H.;Chung, Yun M.;Han, Jeon G.
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2001년도 추계학술발표회 초록집
    • /
    • pp.35-35
    • /
    • 2001
  • agnesium Oxide (MgO) with a NaCI structure is well known to exhibit high secondary electron emission, excellent high temperature chemical stability, high thermal conductance and electrical insulating properties. For these reason MgO films have been widely used for a buffer layer of high $T_c$ superconducting and a protective layer for AC-plasma display panels to improve discharge characteristics and panel lifetime. Up to now MgO films have been synthesized by lE-beam evaporation, Molecular Beam Epitaxy (MBE) and Metalorganic Chemical Vapor Deposition (MOCVD), however there have been some limitations such as low film density and micro-cracks in films. Therefore magnetron sputtering process were emerged as predominant method to synthesis high density MgO films. In previous works, we designed and manufactured unbalanced magnetron source with high power density for the deposition of high quality MgO films. The magnetron discharges were sustained at the pressure of O.lmtorr with power density of $110W/\textrm{cm}^2$ and the maximum deposition rate was measured at $2.8\mu\textrm{m}/min$ for Cu films. In this study, the syntheses of MgO films were carried out by unbalanced magnetron sputtering with various $O_2$ partial pressure and specially target power densities, duty cycles and frequency using pulsed DC power supply. And also we investigated the plasma states with various $O_2$ partial pressure and pulsed DC conditions by Optical Emission Spectroscopy (OES). In order to confirm the relationships between plasma states and film properties such as microstructure and secondary electron emission coefficient were analyzed by X-Ray Diffraction(XRD), Transmission Electron Microscopy(TEM) and ${\gamma}-Focused$ Ion Beam (${\gamma}-FIB$).

  • PDF

RF Magnetron Sputter에 의해 제조된 ITO/Ag/AZO 다층박막의 전기적.광학적 특성

  • 김민환;안진형;김상호
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2006년도 추계학술대회 발표 논문집
    • /
    • pp.51-55
    • /
    • 2006
  • ITO/Ag/AZO and AZ0/Ag/ITO multi-layer films deposited on glass substrate by RF magnetron sputtering have a much better electrical properties than ITO and AZO single-layer films. The multi-layer structure was consisted of three layers of ITO, Ag and AZO. The optimum working pressure of AZO layers deposition was determined to be $1.0{\times}10^{-2}$ torr for high optical transmittance and good electrical conductivity. The electrical and optical properties of sub/IT0/Ag/AZO were higher than those of sub/AZ0/Ag/ITO multi-layer films.

  • PDF

마이크로웨이브 magnetron sputtering법으로 제막된 ZnO:Al 박막의 전기광학적 특성 (Electrical and optical properties of ZnO:Al thin films prepared by microwave magnetron sputtering)

  • 유병석;오근호
    • 한국결정성장학회지
    • /
    • 제8권4호
    • /
    • pp.587-591
    • /
    • 1998
  • 마이크로 웨이브를 보조 여기원으로 사용한 직류 magnetron 스퍼터링법으로 Aluminum이 2wt% 포함되어 있는 Zn:Al 합금타겟을 사용하여 AZO(Aluminum doped zinc oxide) 투명 전도막을 제막하였고 그 영향을 조사하였다. 타겟인가 전압이 420V에서 증착된 막의 투과율, 비저항 그리고 증착속도는 각각 50~70%, $5.5{\times}10^{-3}{\Omega}$cm 그리고 6,000$\AA\textrm{mm}^2$/J 이었다. 이 막을 40$0^{\circ}C$에서 30분간의 열처리하면 광투과율은 80% 이상으로 열처리전에 비해 향상되었으며 전도도는 2배 이상 향상되어 비저항값이 $2.0{\times}10^{-3}{\Omega}$cm인 막을 얻을 수 있었다.

  • PDF

역구조 유기태양전지 버퍼층 응용을 위한 스퍼터링 방법으로 제작된 VOx 박막의 특성 (Characteristics of VOx Thin Films Fabricated by Sputtering as Buffer Layer in Inverted Organic Solar Cell )

  • 양성수;박용섭
    • 한국전기전자재료학회논문지
    • /
    • 제36권1호
    • /
    • pp.36-41
    • /
    • 2023
  • We investigated the properties of vanadium oxide (VOx) buffer layers deposited by a dual RF magnetron sputtering method under various target powers for inverted organic solar cells (IOSCs). Sputter fabricatged VOx thin films exhibited higher crystallinity with the increase of target power, resulting in a uniform and large grain size. The electrical properties of VOx films are improved with the increase of target power because of the increase of V content. In the results, the performance of IOSCs critically depended on the target power during the film growth because the crystalllinity of the VOx film affects the carrier mobility of the VOx film.

탄소섬유 물리적 특성 향상을 위한 스퍼터링 탄소박막의 특성에 대한 연구 (Characteristics of Sputtering Carbon Films for the Improvement of Physical Properties in Carbon Fiber)

  • 박철민;박용섭;김재문
    • 한국전기전자재료학회논문지
    • /
    • 제28권11호
    • /
    • pp.694-697
    • /
    • 2015
  • We investigated the characterizations of carbon films fabricated by dual magnetron sputtering under various RF powers for the improvement of physical properties in carbon fiber (CF). All sputtered carbon films exhibited amorphous structure, regardless of RF powers, resulting in uniform and smooth surfaces. The hardness and elastic modulus are increased with the increase of RF power, and the adhesion and friction properties of carbon films were improved with the increase of RF power. In the results, The increase of RF power in the sputtering method improved tribological properties of the carbon films, and these attributes can be expected to improve the physical properties of the carbon fiber reinforcement plastics.

RF-Sputtering 법에 의한 SiC 나노와이어의 특성연구 (A Characteristic study of SiC Nanowires by RF-Sputtering)

  • 정창구;김태규
    • 열처리공학회지
    • /
    • 제23권6호
    • /
    • pp.344-349
    • /
    • 2010
  • Silicon carbide nanowires were grown by heat treatment of the films at $1200^{\circ}C$ after amorphous SiC thin films were deposited on graphite substrate by radio frequency magnetron sputtering at $600^{\circ}C$. It was confirmed that SiC nanowires with the diameter of 20-60 nm and length of about 50nm were grown from Field Emission Scanning Election Microscope (FE-SEM) and Transmission Election Microscope (TEM) observation. The diameter of nanowires was increased as heat treatment time is increased. The nanowires were identified to ${\beta}$-SiC single crystalline from X-Ray Diffraction(XRD) analysis. It was observed from this study that deposition temperature of samples was critical to the crystallization of nanowires. On the other hand, the effect of deposition time was insignificant.

Annealing Effects of Indium Tin Oxide films grown on 91ass by radio frequency magnetron sputtering technique

  • Jan M. H.;Choi J. M.;Whang C. N.;Jang H. K.;Yu B. S.
    • 한국진공학회지
    • /
    • 제14권3호
    • /
    • pp.159-164
    • /
    • 2005
  • Indium tin oxide (ITO) films were deposited on a glass slide at a thickness of 280 nm by radio frequency(rf) magnetron sputtering from a ceramic target composed of $In_2O_3\;(90\%)\;+\;SnO_2\;(10\%)$. We investigated the effects of the annealing temperature (Ta) between 200 and 350'E for 30 min in air on such properties as thermal stability, surface morphology, and crystal structure of the films. X-ray diffraction spectra revealed that all the films were oriented preferably with [222] direction and [440] direction and the peak intensity increased with increasing annealing temperature. X-ray photoelectron spectroscopy (XPS) showed that the sodium was out-diffused from the glass substrate at the annealing temperature of $350^{\circ}C$. The sodium composition of the ITO film amlealed at $350^{\circ}C\;for\;30\;min\;was\;2.5\%$ at the surface. Also the sodium peak almost disappeared after 3 keV $Ar^+$sputtering for 6 min. The visible transmittance of all ITO films was over $77\%$.

반응성 sputtering법으로 제막된 ZnO : Al 박막의 전기.광학적 특성에 미치는 열처리의 영향 (Effect of heat treatment on the electrical and optical properties of ZnO : Al thin films prepared by reactive magnetron sputtering method)

  • 유세웅;유병석;이정훈
    • 한국결정성장학회지
    • /
    • 제6권4호
    • /
    • pp.493-500
    • /
    • 1996
  • Al이 2 wt% 포함되어 있는 Zn 금속타겟을 사용하여 반응성 직류 magnetron sputtering법으로 AZO(Aluminum doped zinc oxide) 투명전도막을 제조한 후 열처리함에 따라 변하는 박막의 전기적 광학적 특성을 조사하였다. 전이영역에서 증착된 막들은 비저항이 50 % 정도 감소하여 $1{\times}10^{-3}~3.5{\times}10^{-4}\;{\Omega}cm$로 전기적 특성이 향상되었으며, 높은 산소분압에서 산화물로 증착된 막의 비저항이 증착직후에는 $10^{3}\;{\Omega}cm$였으나 열처리 후에는 $2{\times}10^{-3}\;{\Omega}cm$로 감소하였다. 또 전이영역에서 증착된 막은 증착직후 59.4 %이던 평균투과율이 $400^{\circ}C$, 30분 열처리 후에는 77.4 %까지 향상되었다.

  • PDF

RF마그네트론 스퍼터 증착장치 개발연구(I) (Study on the Development of RF Magnetron Sputter-Deposition System(I))

  • 김희제;문덕쇠;진윤식;이홍식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1993년도 하계학술대회 논문집 B
    • /
    • pp.612-614
    • /
    • 1993
  • Sputtering requires a way to bombard the target with sufficient momentum. Positive ions are the most convenient source since their energy and momentum can be controlled by applying a potential to the target. Although many types of discharges have been used for sputtering, magnetrons are now the most widely used because of the high ion current densities. Namely, plasma near the target electrode is confined by magnetic field using permanent magnet, so that the collision probability is increased. It is important to develop RF magnetron sputtering system which has many excellent merits compared with conventional methods. Our study aims to develop 1 kW RF source(13.56 MHz, TR type) and to accumulate the design and construction technology of RF magnetron sputter-deposition system. We developed 1 kW RF sputtering system to deposit thin film. These films are deposited by this RF source matched by auto-matching system using primarily argon gas. Target of Au, Ni, Al, and $SiO_2$ was well deposited on the argon pressure of 5-10 mTorr.

  • PDF

Enhancement of the Corrosion Resistance of CrN Film Deposited by Inductively Coupled Plasma Magnetron Sputtering

  • Chun, Sung-Yong;Kim, Seong-Jong
    • Corrosion Science and Technology
    • /
    • 제20권3호
    • /
    • pp.112-117
    • /
    • 2021
  • Inductively coupled plasma magnetron sputtering (ICPMS) has the advantage of being able to dramatically improve coating properties by increasing the plasma ionization rate and the ion bombardment effect during deposition. Thus, this paper presents the comparative results of CrN films deposited by direct current magnetron sputtering (dcMS) and ICPMS systems. The structure, microstructure, and mechanical and corrosive properties of the CrN coatings were investigated by X-ray diffractometry, scanning electron microscopy, nanoindentation, and corrosion-resistance measurements. The as-deposited CrN films by ICPMS grew preferentially on a 200 plane compared to dcMS on a 111 plane. As a result, the films deposited by ICPMS had a very compact microstructure with high hardness. The nanoindentation hardness reached 19.8 GPa, and 13.5 GPa by dcMS. The corrosion current density of CrN film prepared by ICPMS was about 9.8 × 10-6 mA/cm2, which was 1/470 of 4.6 × 10-3 mA/cm2, the corrosion current density of CrN film prepared by dcMS.