• Title/Summary/Keyword: Magnetorheological (MR) Fluid

Search Result 108, Processing Time 0.026 seconds

A Study on the Effect of the Material and Applied Magnetic Field Strength on the Friction Characteristics of Magnetorheological Fluids (재질과 자기장 세기가 자기유변유체의 마찰 특성에 미치는 영향)

  • Zhang, Peng;Lee, Kwang-Hee;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.29 no.1
    • /
    • pp.39-45
    • /
    • 2013
  • Magnetorheological (MR) fluid belongs to the group of smart materials. In MR fluid, iron particles in base oil form chains in the direction of the applied magnetic field, thus resulting in a variation in the stiffness and damping characteristics of the fluid. Research is being carried out on controlling the stiffness and damping characteristics as well as the tribological characteristics of the MR fluid. In this study, the friction characteristics of MR fluid have been evaluated using three types of materials and magnetic fields of different strengths. The coefficients of friction of the three types of MR fluid are measured, and the relationship between the coefficient of friction and the strength of the applied magnetic field is obtained.

Hysterisis Investigation of Magnetorheological Fluid Using Preisach Model (Preisach 모델을 이용한 MR 유체의 히스테리시스 특성 고찰)

  • Han, Y.M.;Lim, K.H.;Choi, S.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.350-355
    • /
    • 2005
  • This paper presents a new approach for hysteresis modeling of a magnetorheological (MR) fluid. The field-dependent hysteresis of MR fluid is investigated using the Preisach model. The commercial MR Product (MRF-132LD, Lord Corporation) is employed. Its field-dependent shear stress is then obtained using a rheometer (MCR 300, Physica). In order to show the applicability of the Preisach model to the MR fluid, two significant Properties; the minor loop property and the wiping-out property are experimentally examined. Subsequently, the Preisach model for the MR fluid is identified using experimental first order descending (FOD) curves in discrete manner. The effectiveness of the identified hysteresis model is verified in the time domain by comparing the predicted field-dependent shear stress with the measured one. In addition, the hysteresis model proposed in this work is compared to Bingham model.

  • PDF

Hysteresis Investigation of Magnetorheological Fluid Using Preisach Model (Preisach모델을 이용한 MR 유체의 히스테리시스 특성 고찰)

  • Han, Y.M.;Lim, K.H.;Choi, S.B.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.1 s.106
    • /
    • pp.3-11
    • /
    • 2006
  • This paper presents a new approach for hysteresis modeling of a magnetorheological (MR) fluid. The field-dependent hysteresis of MR fluid is investigated using the Preisach model. The commercial MR product (MRF-132LD, Lord Corporation) is employed. Its field-dependent shear stress is then obtained using a rheometer (MCR 300, Physica). In order to show the applicability of the Preisach model to the MR fluid, two significant properties; the minor loop property and the wiping-out. property are experimentally examined. Subsequently, the Preisach model for the MR fluid is identified using experimental first order descending (FOD) curves in discrete manner. The effectiveness of the identified hysteresis model is verified in the time domain by comparing the predicted field-dependent shear stress with the measured one. In addition, the hysteresis model proposed in this work is compared to Bingham model.

Performance Change of Application Devices Caused by Magnetorheological Particle Corrosion (자기유변 입자 부식에 따른 응용장치의 성능 변화)

  • Han, Young-Min;Choi, Seong-Cheol
    • Journal of Digital Convergence
    • /
    • v.14 no.12
    • /
    • pp.193-199
    • /
    • 2016
  • MR(magnetorheological) devices for vehicle applications requires the consistent control performance and the reliable operation. However, the corrosion of iron particles consisting the MR fluid can significantly affect on MR properties. This paper presents an effect of the MR particle corrosion on the performance of MR fluids such as shear stress magnitude which is directly concerned with control performance. As a first step, MR particles are corroded by water-calcium chloride solution. The resulting MR particles are examined by scanning electron microscope (SEM) and their molar ratios are analyzed by the energy dispersive X-ray analysis (EDAX). By dispersing the corroded MR particles into silicone oil, the corroded MR fluid is synthesized for evaluation of MR effect change. A rotational viscometer is adopted to measure shear stress magnitude. Finally, it is demonstrated how much the corrosion affect on performances by comparing the normal MR fluid to the corroded MR fluid, from which performance investigation of the MR devices containing the corroded MR particles will be studied in the second phase of this study.

Tribological and rheological tests of core-shell typed carbonyl iron/polystyrene particle-based magnetorheological fluid

  • Zhang, Peng;Dong, Yu Zhen;Choi, Hyoung Jin;Lee, Chul-Hee
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.342-349
    • /
    • 2018
  • Polystyrene (PS) was coated on carbonyl iron (CI) particles via dispersion polymerization to produce core-shell structured CI/PS particles and adopted as magnetorheological (MR) material. Two MR fluids were prepared by dispersing CI/PS and CI particles in silicone oil. Their MR and tribological properties were investigated using a rheometer and a reciprocating friction and wear tester, respectively. Experimental data showed that tribological properties of MR fluid based on CI/PS particles are significantly enhanced compared to those of CI based MR fluid. Sedimentation problem of CI/PS MR fluid was also expected to be improved due to relatively lower density of CI/PS particles.

Magnetorheological fluids subjected to tension, compression, and oscillatory squeeze input

  • El Wahed, Ali K.;Balkhoyor, Loaie B.
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.961-980
    • /
    • 2015
  • Magnetorheological (MR) fluids are capable of changing their rheological properties under the application of external fields. When MR fluids operate in the so-called squeeze mode, in which displacement levels are limited to a few millimetres but there are large forces, they have many potential applications in vibration isolation. This paper presents an experimental and a numerical investigation of the performance of an MR fluid under tensile and compressive loads and oscillatory squeeze-flow. The performance of the fluid was found to depend dramatically on the strain direction. The shape of the stress-strain hysteresis loops was affected by the strength of the applied field, particularly when the fluid was under tensile loading. In addition, the yield force of the fluid under the oscillatory squeeze-flow mode changed almost linearly with the applied electric or magnetic field. Finally, in order to shed further light on the mechanism of the MR fluid under squeeze operation, computational fluid dynamics analyses of non-Newtonian fluid behaviour using the Bingham-plastic model were carried out. The results confirmed superior fluid performance under compressive inputs.

Vibration Control of Railway Vehicle Steering Mechanism Using Magnetorheological Damper (MR 댐퍼를 이용한 철도 차량 조향 장치의 진동제어)

  • Ha, Sung-Hoon;Choi, Seung-Bok;Yoo, Weon-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.369-374
    • /
    • 2007
  • This paper presents yaw vibration control performances of railway vehicle featuring controllable magnetorheological damper. A cylindrical type of MR damper is devised and its damping force is evaluated by considering fluid resistance and MR effect. Design parameters are determined to achieve desired damping force level. The MR damper model is then incorporated with the governing equations of motion of the railway vehicle which includes vehicle body, bogie and wheel-set. Subsequently, computer simulation of vibration control via proportional-integral-derivative (PID) controller is performed using Matlab. Various control performances are demonstrated under external excitation by creep force between wheel and rail.

  • PDF

Vibration Control and Steering Performance Evaluation of Railway Vehicle Using Magnetorheological Damper (MR댐퍼를 이용한 철도 차량의 진동제어 및 조향성능 고찰)

  • Ha, Sung-Hoon;Choi, Seung-Bok;You, Won-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.5
    • /
    • pp.524-532
    • /
    • 2008
  • This paper presents yaw vibration control performances of railway vehicle featuring controllable magnetorheological damper. A cylindrical type of MR damper is devised and its damping force is evaluated by considering fluid resistance and MR effect. Design parameters are determined to achieve desired damping force level. The MR damper model is then incorporated with the governing equations of motion of the railway vehicle which includes vehicle body, bogie and wheel-set. Subsequently, computer simulation of vibration control via proportional-integral-derivative(PID) controller is performed using Matlab. Various control performances are demonstrated under external excitation by creep force between wheel and rail.

Characteristics of MR Polishing using Carbonyl Iron Particles Coated with Xanthan Gum (Xanthan Gum으로 코팅된 Carbonyl Iron Particle를 이용한 자기유변유체 연마특성에 관한 연구)

  • Lee, J.W.;Ha, S.J.;Shin, B.C.;Kim, D.W.;Cho, M.W.;Choi, H.J.
    • Transactions of Materials Processing
    • /
    • v.21 no.2
    • /
    • pp.138-143
    • /
    • 2012
  • A polishing method using magnetorheological (MR) fluid has been developed as a new precision technique to obtain a fine surface. The process uses a MR fluid that consists of magnetic carbonyl iron (CI) particles, nonmagnetic polishing abrasives, water and stabilizers. But the CI particles in MR fluids cause a severe corrosion problem. When coated with Xanthan gum, the CI particles showed long-term stability in corrosive aqueous environment. The surface roughness obtained from the MR polishing process was evaluated. A series of experiments were performed on fused silica glass using prepared slurries and various process conditions, including different polishing times. Outstanding surface roughness of Ra=2.27nm was obtained on the fused silica glass. The present polishing method could be used to produce ultra-precision micro parts.

A new configuration in a prosthetic knee using of hybrid concept of an MR brake with a T-shaped drum incorporating an arc form surface

  • Sayyaadi, Hassan;Zareh, Seiyed Hamid
    • Smart Structures and Systems
    • /
    • v.17 no.2
    • /
    • pp.275-296
    • /
    • 2016
  • This paper focuses on developing a new configuration on magnetorheological (MR) brake damper as prosthetic knee. Prosthetic knee uses magnetic fields to vary the viscosity of the MR fluid, and thereby its flexion resistance. Exerted transmissibility torque of the knee greatly depends on the magnetic field intensity in the MR fluid. In this study a rotary damper using MR fluid is addressed in which a single rotary disc will act as a brake while MR fluid is activated by magnetic field in different walking gait. The main objective of this study is to investigate a prosthetic knee with one activating rotary disc to accomplish necessary braking torque in walking gait via T-shaped drum with arc surface boundary and implementing of Newton's equation of motion to derive generated torque at the inner surface of the rotary drum. For this purpose a novel configuration of a T-shaped drum based on the effects of a material deformation process is proposed. In this new design, the T-shaped disc will increase the effective areas of influences in between drum and MR fluid together and the arc wall crushes the particles chains (fibrils) of the MR fluid together instead of breaking them via strain in a conventional MR brake. To verify the proposed MR brake, results of the proposed and conventional MR brakes are compared together and demonstrated that the resisting torque of the proposed MR brake is almost two times greater than that of the conventional brake.