• Title/Summary/Keyword: Magnetoresistance ratio

Search Result 123, Processing Time 0.204 seconds

Properties of Exchange Bias Coupling Field and Coercivity Using the Micron-size Holes Formation Inside GMR-SV Film (GMR-SV 박막내 미크론 크기의 홀 형성을 이용한 교환결합세기와 보자력 특성연구)

  • Bolormaa, Munkhbat;Khajidmaa, Purevdorj;Hwang, Do-Guwn;Lee, Sang-Suk;Lee, Won-Hyung;Rhee, Jang-Roh
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.4
    • /
    • pp.117-122
    • /
    • 2015
  • The holes with a diameter of $35{\mu}m$ inside the GMR-SV (giant magnetoresistance-spin valve) film were patterned by using the photolithography process and ECR (electron cyclotron resonance) Ar-ion milling. From the magnetoresistance curves of the GMR-SV film with holes measuring by 4-electrode method, the MR (magnetoresistance ratio) and MS (magnetic sensitivity) are almost same as the values of initial states. On other side hand, the $H_{ex}$ (exchange bias coupling field) and $H_c$ (coercivity) dominantly increased from 120 Oe and 10 Oe to 190 Oe and 41 Oe as increment of the number of holes inside GMR-SV film respectively. These results were shown to be attributed to major effect of EMD (easy magnetic domian) having a region positioned between two holes perpendicular to the sensing current. On the basis of this study, the fabrication of GMR-SV applying to the hole formation improved the magnetoresistance properties having the thermal stability and durability of bio-device.

A Study on the Structural and Magnetoresistance Properties of Co/Ag Multilayers (Co/Ag 다층박막의 구조 및 자기저항 현상에 관한 연구)

  • 이용규;이성래
    • Journal of the Korean Magnetics Society
    • /
    • v.6 no.2
    • /
    • pp.86-92
    • /
    • 1996
  • The structural, magnetic and magnetoresistance properties of Co/Ag multilayer films prepared by thermal coevaporation were studied. When the Ag layer was $60{\AA}$ thick, the Co layer behaved ferromagnetically even with the thickness of $5{\AA}$. However, when the thickness of Ag layer was $30{\AA}$ and that of Co layer was less than $15{\AA}$ thick, the Co layer became discontinuous and the islands of Co behaved mostly superpararnagnetically. The maximum MR ratio, 6.1% was obtained in the $3000{\AA}\;Ag30{\AA}/Co10{\AA}$ Ag30 A ICo 10 A discontinuous multilayer. Agglomeration of the Co layer was promoted by annealing and hence MR ratio increased when the thickness of Ag layer was thinner than $15{\AA}$. The SiO underlayer enhanced the MR ratio in the $1000{\AA}$ thick multilayer via the layer structure improvement.

  • PDF

Fabrication and Characteristics of a Highly Sensitive GMR-SV Biosensor for Detecting of Micron Magnetic Beads (미크론 자성비드 검출용 바이오센서에 대한 고감도 GMR-SV 소자의 제작과 특성 연구)

  • Choi, Jong-Gu;Lee, Sang-Suk;Park, Young-Seok
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.5
    • /
    • pp.173-177
    • /
    • 2012
  • The multilayer structure of glass/Ta(5.8 nm)/NiFe(5 nm)/Cu(t nm)/NiFe(3 nm)/FeMn(12 nm)/Ta(5.8 nm) as typical GMR-SV (giant magnetoresistance-spin valve) films is prepared by ion beam sputtering deposition (IBD). The coercivity and magnetoresiatance ratio are increased and decreased for the decrease of Cu thickness when the thickness of nonmagnetic Cu layer from is varied 2.2 nm to 3.0 nm. It means that the decrease of non-magntic layer is effected to the interlayer exchange coupling of pinned layer and the spin configuration array of free layer. For experiment of detecting and dropping of magnetic beads we used the GMR-SV sensor with glass/Ta/NiFe/Cu/NiFe/FeMn/Ta structure. From the comparison of before and after for the dropping status of magnetic bead, the variations of MR ratio, $H_{ex}$, and $H_c$ are showed 0.9 %, 3 Oe, and 2 Oe, respectively. The fabrication of GMR-SV sensor was included in the process of film deposition, photo-lithography, ion milling, and MR measurement. Further, GMR-SV device can be easily integrated so that detecting biosensor on a single chip becomes possible.

Magnetoresistance of IrMn-Based Spin Filter Specular Spin Valves (IrMn 스핀필터 스페큘라 스핀밸브의 자기저항 특성)

  • Hwang, J.Y.;Rhee, J.R.
    • Journal of the Korean Magnetics Society
    • /
    • v.14 no.6
    • /
    • pp.236-239
    • /
    • 2004
  • We studied the specular spin valve (SSV) having the spin filter layer (SFL) in contact with the ultrathin free layer composed of Ta3/NiFe2/IrMn7/CoFel/(NOLl)/CoFe2/Cu1.8/CoFe( $t_{F}$)/Cu( $t_{SF}$ )/(NOL2)/Ta3.5 (in nm) by the magnetron sputtering system. For this antiferromagnetic I $r_{22}$M $n_{78}$-pinned spin filter specular spin valve (SFSSV) films, an optimal magnetoresistance (MR) ratio of 11.9% was obtained when both the free layer thickness ( $t_{F}$) and the SFL thickness ( $t_{SF}$ ) were 1.5 nm, and the MR ratio higher than 11% was maintained even when the $t_{F}$ was reduced to 1.0 nm. It was due to increase of specular electron by the nano-oxide layer (NOL) and of current shunting through the SFL. Moreover, the interlayer coupling field ( $H_{int}$) between free layer and pinned layer could be explained by considering the RKKY and magnetostatic coupling. The coercivity of the free layer ( $H_{cf}$ ) was significantly reduced as compared to the traditional spin valve (TSV), and was remained as low as 4 Oe when the $t_{F}$ varied from 1 nm to 4 urn. It was found that the SFL made it possible to reduce the free layer thickness and enhance the MR ratio without degrading the soft magnetic property of the free layer.

Josephson Property and Magnetoresistance in Y$_1Ba_2Cu_3O_{7-x}$ and La$_{0.2}Sr_{0.8}MnO_3$ Films on Biepitaxial SrTiO$_3$/(MgO/)Al$_2O_3$(1120) (SrTiO$_3$/(MgO/)Al$_2O_3$(1120) 위에 쌍에피택셜하게 성장한 Y$_1Ba_2Cu_3O_{7-x}$와 La$_{0.2}Sr_{0.8}MnO_3$ 박막의 조셉슨 및 자기저항 특성연구)

  • Lee, Sang-Suk;Hwang, Do-Guwn
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.185-188
    • /
    • 1999
  • Biepitaxial Y$_1Ba_2Cu_3O_{7-x}$ (YBCO) and La$_{0.2}Sr_{0.8}MnO_3$ (LSMO) thin films have been prepared on SrTiO$_3$ buffer layer and MgO seed layer grown on Al$_2O_3$(11${\bar{2}}$0)substrates by dc-sputtering with hollow cylindrical targets, respectively. We charaterized Josephson properties and significantly large magnetoresistance in YBCO and LSMO films with 45$^{\circ}$ grain boundary junction, respectively. The observed working voltage (I$_cR_n$) at 77 K in grain boundary junction was below 10${\mu}$V, which is typical I$_cR_n$ value of single biepitaxial Josephson junction. The field magnetoresistance ratio (MR) of LSMO grain boundary juncoon at 77K was enhanced to 13%, which it was significant MR value with high magnetic field sensitivity at a low field of 250 Oe. These results indicate that inserting the insulating layer instead of the grain boundary layer with metallic phase can be possible to apply a new SIS Josephson junction and a novel magnetic device using spin-polarized tunneling junction.

  • PDF

Improvement of Magnetoresistance in NiO Spin-Valves including CoO layer (CoO가 삽입된 NiO스핀밸브의 자기저항특성 향상에 관한 연구)

  • ;;;;;J. Ginsztler
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.3
    • /
    • pp.112-117
    • /
    • 2000
  • We inserted CoO layer in NiO spin-valves to improve on magnetoresistance and exchange coupling field. The magnetoresistance ratio was increased from 4.5 % to 5.5 % with the increase of CoO thickness. We can not find the dependence between (111) texture and exchange coupling by the measurement of XRD of CoO/NiO spin-valves. The surface roughness of CoO layer, 6.1 $\AA$ is twice more than that of NiO layer, 3.1 $\AA$. The increase of exchange coupling field and coercive field in the CoO/NiO spin-valves will be due to increasing roughness. We prepared the NiO/CoO/NiO/CoO/NiO spin-valves to reduce coercive field and the coercive field decreased from 110 Oe to 50 Oe, and the coupling field is not changed from 70 Oe.

  • PDF

Magnetoresistance of Buffer/CoFe/Cu/Co Sandwiches (Buffer 층을 갖는 CoFe/ Cu/ Co 샌드위치 박막의 자기저항 특성)

  • 송은영;오미영;김경민;이장로;김미양;김희중;박창만;이상석;황도근
    • Journal of the Korean Magnetics Society
    • /
    • v.7 no.3
    • /
    • pp.146-151
    • /
    • 1997
  • Buffer (t $\AA$)/ CoFe(35$\AA$)/Cu (50$\AA$)/Co (35$\AA$) sandwiches prepared by dc magnetron sputtering on Corning glass substrates using the $Co_{90}Fe_{10}$ and Co layers with different coercivities. Dependence of magnetoresistance on the type and thickness of buffer layers, and on the thickness of Cu and the magnetic layers in buffer/ CoFe/Cu /Co sandwiches were investigated. Magnetoresistance ratio and saturation field $H_s$ increased as thickness of the buffer layer becomes thicker, then decreased smoothly after a maximum value. An improved filed sensitivity was realized with the $Ni_{81}Fe_{19}$ buffer layer.

  • PDF

Effect of plasma oxidation time on TMR devices prepared by a ICP sputter (ICP 스퍼터를 이용한 TMR 소자 제작에서 절연막의 플라즈마 산화시간에 따른 미세구조 및 자기적 특성 변화)

  • Lee, Yeong-Min;Song, O-Seong
    • Korean Journal of Materials Research
    • /
    • v.11 no.10
    • /
    • pp.900-906
    • /
    • 2001
  • We prepared tunnel magnetoresistance(TMR) devices of Ta($50\AA$)/NiFe($50\AA$)/IrMn(150$\AA$)/CoFe($50\AA$)/Al ($13\AA$)-O/CoFe($40\AA$)/NiFe($400\AA$)/Ta(50$\AA$) structure which has 100$\times$100 $\mu\textrm{m}^2$ junction area on $2.5\Times2.5 cm^{2}$ $Si/SiO_2$ ($1000\AA$) substrates by a inductively coupled plasma(ICP) magnetron sputter. We fabricated the insulating layer using a ICP plasma oxidation method by varying oxidation time from 80 sec to 360 sec, and measured resistances and magnetoresistance(MR) ratios of TMR devices. We used a high resolution transmission electron microscope(HRTEM) to investigate microstructural evolution of insulating layer. The average resistance of devices increased from 16.38 $\Omega$ to 1018 $\Omega$ while MR ratio decreased from 30.31 %(25.18 %) to 15.01 %(14.97 %) as oxidation time increased from 80 sec to 360 sec. The values in brackets are calculated values considering geometry effect. By comparing cross-sectional TEM images of 220 sec and 360 sec-oxidation time, we found that insulating layer of 360 sec-oxidized was 30 % and 40% greater than that of 150 sec-oxidized in thickness and thickness variation, respectively. Therefore, we assumed that increase of thickness variation with oxidation time is major reason of MR decrease. The resistance of 80 sec-oxidized specimen was 160 k$\Omega$$\mu\textrm{m}^2$ which is appropriate for industrial needs of magnetic random access memory(MRAM) application.

  • PDF

Structural, Magnetic, and Magnetoresistance Properties of Co-evaporated Ag-Co Nano-granular Alloy Films (동시 진공증착한 Ag-Co 미세입상 합금박막의 구조, 자기 및 자기저항 특성)

  • 이수열;이성래
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.1
    • /
    • pp.48-53
    • /
    • 1995
  • The structure, magnetic properties and magnetoresistance phenorrena of Ag-Co nano-granular alloy films prepared by a thermal co-evaporation were studied. Supersaturated fee Ag-Co solid solution and fee Co clusters coexisted in the as-deposited state. As Co content increases from 20 to 55 at.% Co, the grain size of the Ag matrix decreases from 147 to $67{\AA}$, and the Co solubility in the Ag matrix increases from 2.5 to 6.7%. Ag-Co alloy films having composition below 25 at.% Co showed mainly superparamagnetic behavior and above that composition, they showed both paramagnetic and ferromagnetic l::ehavior in the as-deposited state. The maximum magnetoresistance of 19% at R. T. and 10 kOe was obtained in the as-deposited 30 at.% Co alloy film. Heat treatment did not improve the MR ratio tecause most of the Co was already precipitated in the as-deposited state.

  • PDF

Mgnetic and Magnetoresistance Behavior of AgCo Alloy Films and Fe/AgCo/Fe Sandwiches (AgCo 합금박막 및 Fe/AgCo/Fe 삼층막의 자기 및 자기저항 거동)

  • 김세휘;이성래
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.2
    • /
    • pp.104-110
    • /
    • 1999
  • The effect of the composition and the heat treatment on the magnetic and magnetoresistance properties in AgCo alloy films and Fe/AgCo/Fe trilayers prepared by the co-evaporation method were studied. As the alloy film thickness decreases, especially below 50 nm thick, the magnetoresistance decreases and the saturation field increases significantly. The change of the Co content, heat treatment, and deposition of the Fe under/over-layer were effective to prevent the reduction of the and the increasing of the saturation field. For 40 at.%Co sandwiches, the minimum saturation field was obtained in the 20 nm alloy film with 30nm Fe under-over layer annealed at 300 $^{\circ}C$ for 10 min. Its saturation field and the MR ratio were 1.01 kOe 5.16% respectively.

  • PDF